
1

Combinational Logic Design
with Verilog

ECE 152A – Fall 2006

October 17, 2006 ECE 152A - Digital Design Principles 2

Reading Assignment

Brown and Vranesic
2 Introduction to Logic Circuits

2.10 Introduction to Verilog
2.10.1 Structural Specification of Logic Circuits
2.10.2 Behavioral Specification of Logic Circuits
2.10.3 How Not to Write Verilog Code

2

October 17, 2006 ECE 152A - Digital Design Principles 3

Reading Assignment

Brown and Vranesic (cont)
4 Optimized Implementation of Logic Functions

4.12 CAD Tools
4.12.1 Logic Synthesis and Optimization
4.12.2 Physical Design
4.12.3 Timing Simulation
4.12.4 Summary of Design Flow
4.12.5 Examples of Circuits Synthesized from Verilog Code

October 17, 2006 ECE 152A - Digital Design Principles 4

Design Entry

In previous examples, design entry is schematic
based

TTL implementation using standard, discrete integrated
circuits
PLD implementation using library of primitive elements

Code based design entry uses a hardware
description language (HDL) for design entry

Code is synthesized and implemented on a PLD

3

October 17, 2006 ECE 152A - Digital Design Principles 5

Verilog Design

Structural Verilog
Looks like the gate level implementation

Specify gates and interconnection

Text form of schematic
Referred to as “netlist”

Allows for “bottom – up” design
Begin with primitives, instantiate in larger blocks

October 17, 2006 ECE 152A - Digital Design Principles 6

Verilog Design

RTL (Register Transfer Level) Verilog
Allows for “top – down” design
No gate structure or interconnection specified
Synthesizable code (by definition)

Emphasis on synthesis, not simulation
vs. high level behavioral code and test benches

No timing specified in code
No initialization specified in code

Timing, stimulus, initialization, etc. generated in testbench
(later)

4

October 17, 2006 ECE 152A - Digital Design Principles 7

Half Adder - Structural Verilog Design

Recall Half Adder
description from
schematic based
design example

Operation
Truth table
Circuit
Graphical symbol

October 17, 2006 ECE 152A - Digital Design Principles 8

Verilog Syntax

Modules are the basic unit of Verilog models
Functional Description

Unambiguously describes module’s operation
Functional, i.e., without timing information

Input, Output and Bidirectional ports for interfaces
May include instantiations of other modules

Allows building of hierarchy

5

October 17, 2006 ECE 152A - Digital Design Principles 9

Verilog Syntax

Module declaration
module ADD_HALF (s,c,x,y);

Parameter list is I/O Ports

Port declaration
Can be input, output or inout (bidirectional)

output s,c;
input x,y;

October 17, 2006 ECE 152A - Digital Design Principles 10

Verilog Syntax

Declare nodes as wires or reg
Wires assigned to declaratively
Reg assigned to procedurally

More on this later

In a combinational circuit, all nodes can, but don’t
have to be, declared wires

Depends on how code is written
Node defaults to wire if not declared otherwise
wire s,c,x,y;

6

October 17, 2006 ECE 152A - Digital Design Principles 11

Verilog Syntax

Gates and interconnection
xor G1(s,x,y);
and G2(c,x,y);

Verilog gate level primitive
Gate name

Internal (local) name
Instance name

Parameter list
Output port, input port, input port…

October 17, 2006 ECE 152A - Digital Design Principles 12

Gate Instantiation

Verilog Gates
Note: notif
and bufif are
tri-state gates

7

October 17, 2006 ECE 152A - Digital Design Principles 13

Verilog Syntax

Close the module definition with
endmodule

Comments begin with //

October 17, 2006 ECE 152A - Digital Design Principles 14

Half Adder - Structural Verilog Design

module ADD_HALF (s,c,x,y);

output s,c;
input x,y;

wire s,c,x,y;
// this line is optional since nodes default to wires

xor G1 (s,x,y); // instantiation of XOR gate
and G2 (c,x,y); // instantiation of AND gate

endmodule

8

October 17, 2006 ECE 152A - Digital Design Principles 15

Half Adder – PLD Implementation

Functional Simulation

Input

Output

0+0 0+1 1+0 1+1

00 01 01 10

October 17, 2006 ECE 152A - Digital Design Principles 16

Full Adder – Structural Verilog Design

Recall Full Adder
description from
schematic based
design example

Truth table
Karnaugh maps
Circuit

9

October 17, 2006 ECE 152A - Digital Design Principles 17

Full Adder from 2 Half Adders

October 17, 2006 ECE 152A - Digital Design Principles 18

Full Adder – Structural Verilog Design

module ADD_FULL (s,cout,x,y,cin);

output s,cout;
input x,y,cin;

//internal nodes also declared as wires
wire cin,x,y,s,cout,s1,c1,c2;

ADD_HALF HA1(s1,c1,x,y);
ADD_HALF HA2(s,c2,cin,s1);
or (cout,c1,c2);

endmodule

10

October 17, 2006 ECE 152A - Digital Design Principles 19

Full Adder – PLD Implementation

Functional Simulation

Input

Output

0+0+0
0+0+1

00 01

0+1+0
0+1+1

01 10

1+0+0
1+0+1

01 10

1+1+0
1+1+1

10 11

October 17, 2006 ECE 152A - Digital Design Principles 20

Verilog Operators

The Verilog language includes a large number of
logical and arithmetic operators

Bit length column indicates width of result

11

October 17, 2006 ECE 152A - Digital Design Principles 21

Behavioral Specification of Logic Circuits

Continuous Assignment Operator
assign sum = a ^ b;

“Assign” to a wire (generated declaratively)
Equivalent to

xor (sum,a,b);

Continuous and concurrent with other wire
assignment operations

If a or b changes, sum changes accordingly
All wire assignment operations occur concurrently

Order not specified (or possible)

October 17, 2006 ECE 152A - Digital Design Principles 22

Full Adder from Logical Operations

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;
input x,y,cin;

//declaration for continuous assignment
wire cin,x,y,sum,cout;

//logical assignment
assign sum = x ^ y ^ cin;
assign cout = x & y | x & cin | y & cin;

endmodule

12

October 17, 2006 ECE 152A - Digital Design Principles 23

Full Adder from Arithmetic Operations

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;
input x,y,cin;

//declaration for continuous assignment
wire cin,x,y,sum,cout;

// concatenation operator and addition
assign {cout, sum} = x + y + cin;

endmodule

October 17, 2006 ECE 152A - Digital Design Principles 24

Procedural Verilog Statements

Recall:
Wires assigned to declaratively

Continuous / concurrent assignment

Reg “variables” assigned to procedurally
Value is “registered” until next procedural assignment

Continuous assignment (wires) occurs immediately on input
change

Enables clocked (synchronous) timing

13

October 17, 2006 ECE 152A - Digital Design Principles 25

Procedural Verilog Statements

The “always” block
Syntax is “always at the occurrence (@) of any
event on the sensitivity list, execute the
statements inside the block (in order)”

always @ (x or y or cin)
{cout, sum} = x + y + cin;

October 17, 2006 ECE 152A - Digital Design Principles 26

RTL Design of Full Adder

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;
input x,y,cin;

//declaration for behavioral model
wire cin,x,y;
reg sum,cout;

// behavioral specification
always @ (x or y or cin)

{cout, sum} = x + y + cin;

endmodule

14

October 17, 2006 ECE 152A - Digital Design Principles 27

Two-bit, Ripple Carry Adder –
Structural Verilog

module TWO_BIT_ADD (S,X,Y,cin,cout);

input cin;
input [1:0]X,Y; // vectored input
output [1:0]S; // and output signals
output cout;

wire cinternal;

ADD_FULL AF0(S[0],cinternal,X[0],Y[0],cin);
ADD_FULL AF1(S[1],cout,X[1],Y[1],cinternal);

endmodule

October 17, 2006 ECE 152A - Digital Design Principles 28

Two-bit, Ripple Carry Adder –
PLD Implementation

Functional Simulation
HEX Bus Representation of X, Y and Sum

0+1+3 = 4 = 10HEX → 1+2+2 = 5 = 11HEX →

0+3+0 = 3 = 03HEX → 1+3+3 = 7 = 13HEX →

15

October 17, 2006 ECE 152A - Digital Design Principles 29

Verilog Test Bench

Device Under Test (DUT)
Circuit being designed/developed

Full adder for this example

Testbench
Provides stimulus to DUT

Like test equipment on a bench

Instantiate DUT in testbench
Generate all signals in testbench
No I/O (parameter list) in testbench

October 17, 2006 ECE 152A - Digital Design Principles 30

Full Adder Testbench Example

module ADDFULL_TB;

reg a,b,ci;
wire sum,co;

initial begin
a = 0;
b = 0;
ci = 0;

end

always begin
#5 a = ~a;

end

always begin
#10 b = ~b;

end

always begin
#20 ci = ~ci;

end

ADD_FULL AF1(sum,co,a,b,ci);

endmodule

