# ECE160 / CMPS182 Multimedia

### Lecture 14: Spring 2007 MPEG Audio Compression

# **Psychoacoustics**

- The range of human hearing is about 20 Hz to about 20 kHz
- The frequency range of the voice is typically only from about 500 Hz to 4 kHz
- The dynamic range, the ratio of the maximum sound amplitude to the quietest sound that humans can hear, is on the order of about 120 dB

# **Equal-Loudness Relations**

#### **Fletcher-Munson Curves**

- Equal loudness curves that display the relationship between perceived loudness ("Phons", in dB) for a given stimulus sound volume ("Sound Pressure Level", also in dB), as a function of frequency
- The bottom curve shows what level of pure tone stimulus is required to produce the perception of a 10 dB sound
- All the curves are arranged so that the perceived loudness level gives the same loudness as for that loudness level of a pure tone at 1 kHz



MPEG Audio Compression

## **Threshold of Hearing**

- Threshold of human hearing, for pure tones: if a sound is above the dB level shown then the sound is audible
- Turning up a tone so that it equals or surpasses the curve means that we can then distinguish the sound
- An approximate formula exists for this curve:



Lecture 14 MPEG Audio Compression

# **Frequency Masking**

- Lossy audio data compression methods, such as MPEG/Audio encoding, do not encode some sounds which are masked anyway
- The general situation in regard to masking is as follows:
  1. A lower tone can effectively mask (make us unable to hear) a higher tone

2. The reverse is not true - a higher tone does not mask a lower tone well

3. The greater the power in the masking tone, the wider is its influence - the broader the range of frequencies it can mask.

4. As a consequence, if two tones are widely separated in frequency then little masking occurs

# **Frequency Masking Curves**

- Frequency masking is studied by playing a particular pure tone, say 1 kHz again, at a loud volume, and determining how this tone affects our ability to hear tones nearby in frequency
  - One would generate a 1 kHz masking tone, at a fixed sound level of 60 dB, and then raise the level of a nearby tone, e.g., 1.1 kHz, until it is just audible
- The threshold plots the audible level for a single masking tone (1 kHz) and a single sound level
- The plot changes if other masking frequencies or sound levels are used.

## **Frequency Masking Curve**



ECE160 Spring 2007

Lecture 14 MPEG Audio Compression

7

## **Frequency Masking Curve**



MPEG Audio Compression

Spring 2007

## **Critical Bands**

- Critical bandwidth represents the ear's resolving power for simultaneous tones or partials
  - At the low-frequency end, a critical band is less than 100 Hz wide, while for high frequencies the width can be greater than 4 kHz
- Experiments indicate that the critical bandwidth:
  - for masking frequencies < 500 Hz: remains approximately constant in width ( about 100 Hz)
  - for masking frequencies > 500 Hz: increases approximately linearly with frequency

# **Critical Bands and Bandwidth**

| Band # | Lower Bound | Center | Upper Bound | Bandwidth |
|--------|-------------|--------|-------------|-----------|
|        | (Hz)        | (Hz)   | (Hz)        | (Hz)      |
| 1      | -           | 50     | 100         | -         |
| 2      | 100         | 150    | 200         | 100       |
| 3      | 200         | 250    | 300         | 100       |
| 4      | 300         | 350    | 400         | 100       |
| 5      | 400         | 450    | 510         | 110       |
| 6      | 510         | 570    | 630         | 120       |
| 7      | 630         | 700    | 770         | 140       |
| 8      | 770         | 840    | 920         | 150       |
| 9      | 920         | 1000   | 1080        | 160       |
| 10     | 1080        | 1170   | 1270        | 190       |
| 11     | 1270        | 1370   | 1480        | 210       |
| 12     | 1480        | 1600   | 1720        | 240       |

ECE160 Spring 2007 Lecture 14 MPEG Audio Compression

## **Bark Unit**

- **Bark unit** is defined as the width of one critical band, for any masking frequency
- The idea of the Bark unit: every critical band width is roughly equal in terms of Barks



# **Temporal Masking**

- Phenomenon: any loud tone will cause the hearing receptors in the inner ear to become *saturated* and require time to recover
- The louder is the test tone, the shorter it takes for our hearing to get over hearing the masking.





### **Temporal and Frequency Masking**

 For a masking tone that is played for a longer time, it takes longer before a test tone can be heard.
 Solid curve: masking tone played for 200 msec;
 Dashed curve: masking tone played for 100 msec.



14

# **MPEG** Audio

 MPEG audio compression takes advantage of psychoacoustic models, constructing a large multidimensional lookup table to transmit masked frequency components using fewer bits

#### MPEG Audio Overview

1. Applies a filter bank to the input to break it into its frequency components

2. In parallel, a psychoacoustic model is applied to the data for bit allocation block

3. The number of bits allocated are used to quantize the info from the filter bank - providing the compression

# **MPEG** Layers

- MPEG audio offers three compatible *layers* :
  - Each succeeding layer able to understand the lower layers
  - Each succeeding layer offering more complexity in the psychoacoustic model and better compression for a given level of audio quality
  - Each succeeding layer, with increased compression effectiveness, accompanied by extra delay
- The objective of MPEG layers: a good tradeoff between quality and bit-rate

# **MPEG** Layers

- Layer 1 quality can be quite good provided a comparatively high bit-rate is available
  - Digital Audio Tape typically uses Layer 1 at around 192 kbps
- Layer 2 has more complexity; was proposed for use in Digital Audio Broadcasting
- Layer 3 (MP3) is most complex, and was originally aimed at audio transmission over ISDN lines
- Most of the complexity increase is at the encoder, not the decoder - accounting for the popularity of MP3 players

# **MPEG Audio Strategy**

#### MPEG approach to compression relies on:

- Quantization
- Human auditory system is not accurate within the width of a critical band (perceived loudness and audibility of a frequency)

### **MPEG encoder** employs a bank of filters to:

- Analyze the frequency ("spectral") components of the audio signal by calculating a frequency transform of a window of signal values
- Decompose the signal into subbands by using a bank of filters

(Layer 1 & 2: "quadrature-mirror";

Layer 3: adds a DCT; psychoacoustic model: Fourier

transform)

# **MPEG Audio Strategy**

- Frequency masking: by using a psychoacoustic model to estimate the just noticeable noise level:
  - Encoder balances the masking behavior and the available number of bits by discarding inaudible frequencies
  - Scaling quantization according to the sound level that is left over, above masking levels
- May take into account the actual width of the critical bands:
  - For practical purposes, audible frequencies are divided into 25 main critical bands
  - For simplicity, adopts a *uniform width* for all frequency analysis filters, using 32 overlapping subbands

### MPEG Audio Compression Algorithm



### MPEG Audio Compression Algorithm

- The algorithm proceeds by dividing the input into 32 frequency subbands, via a filter bank
  - A linear operation taking 32 PCM samples, sampled in time; output is 32 frequency coefficients
- In the Layer 1 encoder, the sets of 32 PCM values are first assembled into a set of 12 groups of 32s
  - An inherent time lag in the coder, equal to the time to accumulate 384 (i.e., 12x32) samples
- A Layer 2 or Layer 3, frame actually accumulates more than 12 samples for each subband: a frame includes 1,152 samples

### MPEG Audio Compression Algorithm



# **Bit Allocation Algorithm**

**Aim**: ensure that all of the quantization noise is below the masking thresholds

#### One common scheme:

- For each subband, the psychoacoustic model calculates the Signal- to-Mask Ratio (SMR)in dB
- Then the "Mask-to-Noise Ratio" (MNR) is defined as the difference

 $MNR_{dB} = SNR_{dB} - SMR_{dB}$ 

- The lowest MNR is determined, and the number of code-bits allocated to this subband is incremented
- Then a new estimate of the SNR is made, and the process iterates until there are no more bits to allocate

## **Bit Allocation Algorithm**

### A qualitative view of SNR

SMR and MNR are shown, with one dominant masker and *m* bits allocated to a particular critical band.



# MPEG Layers 1 and 2

 Mask calculations are performed in parallel with subband filtering



Lecture 14 MPEG Audio Compression

# Layer 2 of MPEG Audio

### Main difference:

- Three groups of 12 samples are encoded in each frame and temporal masking is brought into play, as well as frequency masking
- Bit allocation is applied to window lengths of 36 samples instead of 12
- The resolution of the quantizers is increased from 15 bits to 16

### Advantage:

 a single scaling factor can be used for all three groups

# Layer 3 of MPEG Audio

### Main difference:

- Employs a similar filter bank to that used in Layer 2, except using a set of filters with nonequal frequencies
- Takes into account stereo redundancy
- Uses Modified Discrete Cosine Transform (MDCT) - addresses problems that the DCT has at boundaries of the window used by overlapping frames by 50%:

$$F(u) = 2\sum_{i=0}^{N-1} f(i) \cos\left[\frac{2\pi}{N}\left(i + \frac{N/2 + 1}{2}\right)(u + 1/2)\right], \ u = 0, ..., N/2 - 1$$

# **MPEG Layer 3 Coding**

PCM audio signal



### **MP3 Compression Performance**

| Sound Quality | Bandwidth | Mode   | Compression |
|---------------|-----------|--------|-------------|
|               |           |        | Ratio       |
| Telephony     | 3.0 kHz   | Mono   | 96:1        |
| Better than   | 4.5 kHz   | Mono   | 48:1        |
| Short-wave    |           |        |             |
| Better than   | 7.5 kHz   | Mono   | 24:1        |
| AM radio      |           |        |             |
| Similar to    | 11 kHz    | Stereo | 26 - 24:1   |
| FM radio      |           |        |             |
| Near-CD       | 15 kHz    | Stereo | 16:1        |
| CD            | > 15 kHz  | Stereo | 14 - 12:1   |

### MPEG-2 AAC (Advanced Audio Coding)

The standard vehicle for DVDs:

- Audio coding technology for the DVD-Audio Recordable (DVD-AR) format, also adopted by XM Radio
- Aimed at transparent sound reproduction for theaters
- Can deliver this at 320 kbps for five channels so that sound can be played from 5 different directions:
  - Left, Right, Center, Left-Surround, and Right-Surround

# **MPEG-2 AAC**

- Also capable of delivering high-quality stereo sound at bit-rates below 128 kbps
- Support up to 48 channels, sampling rates between 8 kHz and 96 kHz, and bit-rates up to 576 kbps per channel
- Like MPEG-1, MPEG-2, supports three different "profiles", but with a different purpose:
  - *Main* profile
  - Low Complexity(LC) profile
  - Scalable Sampling Rate (SSR) profile

## **MPEG-4** Audio

- Integrates several different audio components into one standard: speech compression, perceptually based coders, text-to-speech, and MIDI
- MPEG-4 AAC (Advanced Audio Coding), is similar to the MPEG-2 AAC standard, with some minor changes

#### **Perceptual Coders**

- Incorporate a *Perceptual Noise Substitution* module
- Include a *Bit-Sliced Arithmetic Coding* (BSAC) module
- Also include a second perceptual audio coder, a vectorquantization method entitled TwinVQ

## **MPEG-4** Audio

### **Structured Coders**

- Takes "Synthetic/Natural Hybrid Coding" (SNHC) in order to have very low bit-rate delivery an option
- **Objective**: integrate both "natural" multimedia sequences, both video and audio, with those arising synthetically "structured" audio
- Takes a "toolbox" approach and allows specification of many such models.
  - E.g., *Text-To-Speech* (TTS) is an ultra-low bit-rate method, and actually works, provided one need not care what the speaker actually sounds like

### **Other Commercial Audio Codecs**

| Codec Bit-rate |              | Complexity        | Main             |
|----------------|--------------|-------------------|------------------|
|                | kbps/channel |                   | Application      |
| Dolby AC-2     | 128-192      | low (en-/decoder) | p-to-p, cable    |
| Dolby AC-3     | 32-640       | low (decoder)     | HDTV, cable, DVD |
| Sony ATRAC     | 140          | low (en-/decoder) | minidisc         |

# **MPEG-7 and MPEG-21**

- **MPEG-7**: A means of standardizing meta-data for audiovisual multimedia sequences - meant to represent information about multimedia information
  - In terms of audio: facilitate the representation and search for sound content. Example application supported by MPEG-7: *automatic speech recognition* (ASR).
- **MPEG-21**: Ongoing effort, aimed at driving a standardization effort for a Multimedia Framework from a consumer's perspective, particularly *interoperability* 
  - In terms of audio: support of this goal, using audio.

**Difference** from current standards:

- MPEG-4 is aimed at compression using objects.
- MPEG-7 is mainly aimed at "search": How can we find objects, assuming that multimedia is indeed coded in terms of objects