ECE160 / CMPS182
Multimedia
Lecture 14: Spring 2007
MPEG Audio Compression
Psychoacoustics

• The range of human hearing is about 20 Hz to about 20 kHz
• The frequency range of the voice is typically only from about 500 Hz to 4 kHz
• The dynamic range, the ratio of the maximum sound amplitude to the quietest sound that humans can hear, is on the order of about 120 dB
Equal-Loudness Relations

Fletcher-Munson Curves

- Equal loudness curves that display the relationship between perceived loudness ("Phons", in dB) for a given stimulus sound volume ("Sound Pressure Level", also in dB), as a function of frequency
- The bottom curve shows what level of pure tone stimulus is required to produce the perception of a 10 dB sound
- All the curves are arranged so that the perceived loudness level gives the same loudness as for that loudness level of a pure tone at 1 kHz
Threshold of Hearing

- Threshold of human hearing, for pure tones: if a sound is above the dB level shown then the sound is audible
- Turning up a tone so that it equals or surpasses the curve means that we can then distinguish the sound
- An approximate formula exists for this curve:
Frequency Masking

• Lossy audio data compression methods, such as MPEG/Audio encoding, do not encode some sounds which are masked anyway.

• The general situation in regard to masking is as follows:
 1. A lower tone can effectively mask (make us unable to hear) a higher tone.
 2. The reverse is not true - a higher tone does not mask a lower tone well.
 3. The greater the power in the masking tone, the wider is its influence - the broader the range of frequencies it can mask.
 4. As a consequence, if two tones are widely separated in frequency then little masking occurs.
Frequency Masking Curves

• Frequency masking is studied by playing a particular pure tone, say 1 kHz again, at a loud volume, and determining how this tone affects our ability to hear tones nearby in frequency
 – One would generate a 1 kHz masking tone, at a fixed sound level of 60 dB, and then raise the level of a nearby tone, e.g., 1.1 kHz, until it is just audible
• The threshold plots the audible level for a single masking tone (1 kHz) and a single sound level
• The plot changes if other masking frequencies or sound levels are used.
Frequency Masking Curve
Frequency Masking Curve
Critical Bands

• **Critical bandwidth** represents the ear's resolving power for simultaneous tones or partials
 – At the low-frequency end, a critical band is less than 100 Hz wide, while for high frequencies the width can be greater than 4 kHz

• Experiments indicate that the critical bandwidth:
 – for masking frequencies < 500 Hz: remains approximately constant in width (about 100 Hz)
 – for masking frequencies > 500 Hz: increases approximately linearly with frequency
Critical Bands and Bandwidth

<table>
<thead>
<tr>
<th>Band #</th>
<th>Lower Bound (Hz)</th>
<th>Center (Hz)</th>
<th>Upper Bound (Hz)</th>
<th>Bandwidth (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>400</td>
<td>450</td>
<td>510</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>510</td>
<td>570</td>
<td>630</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>630</td>
<td>700</td>
<td>770</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>770</td>
<td>840</td>
<td>920</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>920</td>
<td>1000</td>
<td>1080</td>
<td>160</td>
</tr>
<tr>
<td>10</td>
<td>1080</td>
<td>1170</td>
<td>1270</td>
<td>190</td>
</tr>
<tr>
<td>11</td>
<td>1270</td>
<td>1370</td>
<td>1480</td>
<td>210</td>
</tr>
<tr>
<td>12</td>
<td>1480</td>
<td>1600</td>
<td>1720</td>
<td>240</td>
</tr>
</tbody>
</table>
Bark Unit

- **Bark unit** is defined as the width of one critical band, for any masking frequency
- The idea of the Bark unit: every critical band width is roughly equal in terms of Barks
Temporal Masking

- **Phenomenon**: any loud tone will cause the hearing receptors in the inner ear to become saturated and require time to recover.
- The louder is the test tone, the shorter it takes for our hearing to get over hearing the masking.

![Temporal Masking Diagram](image)
Temporal and Frequency Masking

Tones below surface are inaudible
Temporal and Frequency Masking

- For a masking tone that is played for a longer time, it takes longer before a test tone can be heard. Solid curve: masking tone played for 200 msec; Dashed curve: masking tone played for 100 msec.
MPEG Audio

- **MPEG audio compression** takes advantage of psychoacoustic models, constructing a large multi-dimensional lookup table to transmit masked frequency components using fewer bits.

- **MPEG Audio Overview**
 1. Applies a filter bank to the input to break it into its frequency components.
 2. In parallel, a psychoacoustic model is applied to the data for bit allocation block.
 3. The number of bits allocated are used to quantize the info from the filter bank - providing the compression.
MPEG Layers

• MPEG audio offers three compatible layers:
 – Each succeeding layer able to understand the lower layers
 – Each succeeding layer offering more complexity in the psychoacoustic model and better compression for a given level of audio quality
 – Each succeeding layer, with increased compression effectiveness, accompanied by extra delay

• The objective of MPEG layers: a good tradeoff between quality and bit-rate
MPEG Layers

• Layer 1 quality can be quite good - provided a comparatively high bit-rate is available
 – Digital Audio Tape typically uses Layer 1 at around 192 kbps
• Layer 2 has more complexity; was proposed for use in Digital Audio Broadcasting
• Layer 3 (MP3) is most complex, and was originally aimed at audio transmission over ISDN lines
• Most of the complexity increase is at the encoder, not the decoder - accounting for the popularity of MP3 players
MPEG Audio Strategy

MPEG approach to compression relies on:
- Quantization
- Human auditory system is not accurate within the width of a critical band (perceived loudness and audibility of a frequency)

MPEG encoder employs a bank of filters to:
- Analyze the frequency ("spectral") components of the audio signal by calculating a frequency transform of a window of signal values
- Decompose the signal into subbands by using a bank of filters
 (Layer 1 & 2: "quadrature-mirror";
 Layer 3: adds a DCT; psychoacoustic model: Fourier transform)
MPEG Audio Strategy

• **Frequency masking**: by using a psychoacoustic model to estimate the just noticeable noise level:
 – Encoder balances the masking behavior and the available number of bits by discarding inaudible frequencies
 – Scaling quantization according to the sound level that is left over, above masking levels

• May take into account the actual width of the critical bands:
 – For practical purposes, audible frequencies are divided into 25 main critical bands
 – For simplicity, adopts a *uniform width* for all frequency analysis filters, using 32 overlapping subbands
MPEG Audio Compression Algorithm

Audio (PCM) input

Time to frequency transformation

Bit allocation, quantizing and coding

Bitstream formatting

Encoded bitstream

Psychoacoustic modeling

Encoded bitstream

Bitstream unpacking

Frequency sample reconstruction

Frequency to time transformation

Decoded PCM audio
MPEG Audio Compression Algorithm

• The algorithm proceeds by dividing the input into 32 frequency subbands, via a filter bank
 – A linear operation taking 32 PCM samples, sampled in time; output is 32 frequency coefficients

• In the Layer 1 encoder, the sets of 32 PCM values are first assembled into a set of 12 groups of 32s
 – An inherent time lag in the coder, equal to the time to accumulate 384 (i.e., 12x32) samples

• A Layer 2 or Layer 3, frame actually accumulates more than 12 samples for each subband: a frame includes 1,152 samples
MPEG Audio Compression Algorithm

Audio (PCM) samples In

Subband filter 0
Subband filter 1
Subband filter 2
Subband filter 31

Layer 1 Frame
Layer 2 and Layer 3 Frame

Each subband filter produces 1 sample out for every 32 samples in

12 samples 12 samples 12 samples
12 samples 12 samples 12 samples
12 samples 12 samples 12 samples
Bit Allocation Algorithm

Aim: ensure that all of the quantization noise is below the masking thresholds

One common scheme:
- For each subband, the psychoacoustic model calculates the *Signal-to-Mask Ratio* (SMR) in dB
- Then the “Mask-to-Noise Ratio” (MNR) is defined as the difference
 \[\text{MNR}_{\text{dB}} = \text{SNR}_{\text{dB}} - \text{SMR}_{\text{dB}} \]
- The lowest MNR is determined, and the number of code-bits allocated to this subband is incremented
- Then a new estimate of the SNR is made, and the process iterates until there are no more bits to allocate
Bit Allocation Algorithm

A qualitative view of SNR

SMR and MNR are shown, with one dominant masker and m bits allocated to a particular critical band.
MPEG Layers 1 and 2

- Mask calculations are performed in parallel with subband filtering
Layer 2 of MPEG Audio

Main difference:
- Three groups of 12 samples are encoded in each frame and temporal masking is brought into play, as well as frequency masking
- Bit allocation is applied to window lengths of 36 samples instead of 12
- The resolution of the quantizers is increased from 15 bits to 16

Advantage:
- a single scaling factor can be used for all three groups
Layer 3 of MPEG Audio

Main difference:
• Employs a similar filter bank to that used in Layer 2, except using a set of filters with non-equal frequencies
• Takes into account stereo redundancy
• Uses Modified Discrete Cosine Transform (MDCT) - addresses problems that the DCT has at boundaries of the window used by overlapping frames by 50%:

\[F(u) = 2 \sum_{i=0}^{N-1} f(i) \cos \left[\frac{2\pi}{N} \left(i + \frac{N/2 + 1}{2} \right) (u + 1/2) \right], \quad u = 0, \ldots, N/2 - 1 \]
MPEG Layer 3 Coding

PCM audio signal

Filter bank: 32 subbands

1,024-point FFT

M-DCT

Psychoacoustic model

Nonuniform quantization

Side-information coding

Coded audio signal

Bitstream formatting

Huffman coding
MP3 Compression Performance

<table>
<thead>
<tr>
<th>Sound Quality</th>
<th>Bandwidth</th>
<th>Mode</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephony</td>
<td>3.0 kHz</td>
<td>Mono</td>
<td>96:1</td>
</tr>
<tr>
<td>Better than Short-wave</td>
<td>4.5 kHz</td>
<td>Mono</td>
<td>48:1</td>
</tr>
<tr>
<td>Better than AM radio</td>
<td>7.5 kHz</td>
<td>Mono</td>
<td>24:1</td>
</tr>
<tr>
<td>Similar to FM radio</td>
<td>11 kHz</td>
<td>Stereo</td>
<td>26 - 24:1</td>
</tr>
<tr>
<td>Near-CD</td>
<td>15 kHz</td>
<td>Stereo</td>
<td>16:1</td>
</tr>
<tr>
<td>CD</td>
<td>> 15 kHz</td>
<td>Stereo</td>
<td>14 - 12:1</td>
</tr>
</tbody>
</table>
MPEG-2 AAC
(Advanced Audio Coding)

The standard vehicle for DVDs:

• Audio coding technology for the DVD-Audio Recordable (DVD-AR) format, also adopted by XM Radio

• Aimed at transparent sound reproduction for theaters

• Can deliver this at 320 kbps for five channels so that sound can be played from 5 different directions:
 – Left, Right, Center, Left-Surround, and Right-Surround
MPEG-2 AAC

- Also capable of delivering high-quality stereo sound at bit-rates below 128 kbps
- Support up to 48 channels, sampling rates between 8 kHz and 96 kHz, and bit-rates up to 576 kbps per channel
- Like MPEG-1, MPEG-2, supports three different “profiles”, but with a different purpose:
 - Main profile
 - Low Complexity (LC) profile
 - Scalable Sampling Rate (SSR) profile
MPEG-4 Audio

- Integrates several different audio components into one standard: speech compression, perceptually based coders, text-to-speech, and MIDI
- **MPEG-4 AAC (Advanced Audio Coding)**, is similar to the MPEG-2 AAC standard, with some minor changes

Perceptual Coders
- Incorporate a *Perceptual Noise Substitution* module
- Include a *Bit-Sliced Arithmetic Coding* (BSAC) module
- Also include a second perceptual audio coder, a vector-quantization method entitled TwinVQ
MPEG-4 Audio

Structured Coders

• Takes “Synthetic/Natural Hybrid Coding" (SNHC) in order to have very low bit-rate delivery an option

• **Objective**: integrate both "natural" multimedia sequences, both video and audio, with those arising synthetically – “structured" audio

• Takes a “toolbox" approach and allows specification of many such models.
 – E.g., *Text-To-Speech* (TTS) is an ultra-low bit-rate method, and actually works, provided one need not care what the speaker actually sounds like
Other Commercial Audio Codecs

<table>
<thead>
<tr>
<th>Codec</th>
<th>Bit-rate kbps/channel</th>
<th>Complexity</th>
<th>Main Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolby AC-2</td>
<td>128-192</td>
<td>low (en-/decoder)</td>
<td>p-to-p, cable</td>
</tr>
<tr>
<td>Dolby AC-3</td>
<td>32-640</td>
<td>low (decoder)</td>
<td>HDTV, cable, DVD</td>
</tr>
<tr>
<td>Sony ATRAC</td>
<td>140</td>
<td>low (en-/decoder)</td>
<td>minidisc</td>
</tr>
</tbody>
</table>
MPEG-7 and MPEG-21

MPEG-7: A means of standardizing meta-data for audiovisual multimedia sequences - meant to represent information about multimedia information
 - In terms of audio: facilitate the representation and search for sound content. Example application supported by MPEG-7: automatic speech recognition (ASR).

MPEG-21: Ongoing effort, aimed at driving a standardization effort for a Multimedia Framework from a consumer's perspective, particularly interoperability
 - In terms of audio: support of this goal, using audio.

Difference from current standards:
• MPEG-4 is aimed at compression using objects.
• MPEG-7 is mainly aimed at “search": How can we find objects, assuming that multimedia is indeed coded in terms of objects