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Vector Quantization (VQ)
• According to Shannon's original work on

information theory, any compression system
performs better if it operates on vectors or
groups of samples rather than individual
symbols or samples.

• Form vectors of input samples by simply
concatenating a number of consecutive
samples into a single vector.

• Instead of single reconstruction values as in
scalar quantization, in VQ code vectors with
n components are used. A collection of these
code vectors form the codebook.
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Vector Quantization
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Transform Coding
The rationale behind transform coding:
• If Y is the result of a linear transform T of the input vector

X in such a way that the components of Y are much less
correlated, then Y can be coded more efficiently than X.

• If most information is accurately described by the first few
components of a transformed vector, then the remaining
components can be coarsely quantized, or even set to
zero, with little signal distortion.
– Discrete Cosine Transform (DCT) will be studied first.
– In addition, we will examine the Karhunen-Loeve Transform (KLT)

which optimally decorrelates the components of the input X.
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Spatial Frequency and DCT
• Spatial frequency indicates how many times

pixel values change across an image block.
• The DCT formalizes this notion with a measure

of how much the image contents change in
correspondence to the number of cycles of a
cosine wave per block.

• The role of the DCT is to decompose the original
signal into its DC and AC components; the role
of the IDCT is to reconstruct (re-compose) the
signal.
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DCT
• Given an input function f(i,j) over two integer

variables i and j (a piece of an image), the 2D
DCT transforms it into a new function F(u,v),
with integer u and v running over the same
range as i and j. The general definition of the
transform is:

• where i,u = 0,1,…,M −  1;   j,v = 0,1,…, N − 1;
and the constants C(u) and C(v) are determined
by
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1D Discrete Cosine Transform
(1D DCT)

with inverse
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1D Discrete Cosine Transform
(1D DCT)
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1D Discrete Cosine Transform
(1D DCT)
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1D Discrete Cosine Transform
(1D DCT)
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1D Discrete Cosine Transform
(1D DCT)
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2D Discrete Cosine Transform
(2D DCT)

with inverse
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2D Discrete Cosine Transform
(2D DCT)
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Karhunen-Loeve Transform
(KLT)

• The Karhunen-Loeve transform is a reversible
linear transform that exploits the statistical
properties of the vector representation.

• It optimally decorrelates the input signal.
• To understand the optimality of the KLT,

consider the autocorrelation matrix RX of the
input vector X defined as:
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KLT Example
• To illustrate the mechanics of the KLT, consider

the four 3D input vectors   x1 = (4,4,5),
x2 = (3,2,5), x3 = (5,7,6), and x4 = (6,7,7).

• Estimate the mean:

• Estimate the autocorrelation matrix of the input:
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KLT Example

• The eigenvalues of RX are λ1 = 6.1963, λ2
= 0.2147, and λ3 = 0.0264. The
corresponding eigenvectors are:

• The KLT is given by the matrix
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KLT Example
• Subtracting the mean vector from each input vector and

apply the KLT

• Since the rows of T are orthonormal vectors, the inverse
transform is just the transpose: T−1 = TT, and

x = TTy+mx
• In general, after the KLT most of the “energy" of the

transform coefficients are concentrated within the first
few components.  This is the “energy compaction"
property of the KLT.
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Wavelet-Based Coding
• The objective of the wavelet transform is to decompose

the input signal into components that are easier to deal
with, have special interpretations, or have some
components that can be thresholded away, for
compression purposes.

• We want to be able to at least approximately reconstruct
the original signal given these components.

• The basis functions of the
wavelet transform are localized
in space, time and frequency.

• There are two types of wavelet
transforms:  the continuous
wavelet transform (CWT) and
the discrete wavelet transform
(DWT).
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The Discrete Wavelet Transform

• Discrete wavelets are formed from a mother wavelet,
with scale and shift in discrete steps.

• The DWT makes the connection between wavelets in the
continuous time domain and “filter banks" in the discrete
time domain in a multiresolution analysis framework.

• It is possible to show that the dilated and translated
family of wavelets

form an orthonormal basis of L2(R).
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Multiresolution Analysis
in the Wavelet Domain

• Multiresolution analysis provides the tool to adapt signal
resolution to only relevant details for a particular task.

• The approximation component is then recursively
decomposed into approximation and detail at
successively coarser scales.

• Wavelet functions  Ρ(t) are used to characterize detail
information. The averaging (approximation) information
is formally determined by a kind of dual to the mother
wavelet, called the “scaling function" φ(t).

• Wavelets are set up such that the approximation at
resolution 2− j contains all the necessary information to
compute an approximation at coarser resolution 2−(j+1) .



ECE160
Spring 2007

Lecture 8
Lossy Compression Algorithms

21

Multiresolution Analysis
in the Wavelet Domain

• The scaling function must satisfy the so-called dilation equation:

• The wavelet at the coarser level is also expressible as a sum of
translated scaling functions:

• The vectors h0[n] and h1[n] are called the low-pass and highpass
analysis filters. To reconstruct the original input, an inverse
operation is needed. The inverse filters are called synthesis filters.
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Embedded Zerotree of
Wavelet Coefficients

• Effective and computationally efficient for image coding.
• The EZW algorithm addresses two problems:

1.  Obtain the best image quality for a given bit-rate, and
2.  Accomplish this task in an embedded fashion.

• Using an embedded code allows the encoder to
terminate the encoding at any point. Hence, the encoder
is able to meet any target bit-rate exactly.

• Similarly, a decoder can cease to decode at any point
and can produce reconstructions corresponding to all
lower-rate encodings.
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The Zerotree Data Structure
• The EZW algorithm efficiently codes the “significance

map“ which indicates the locations of nonzero quantized
wavelet coefficients.

• This is is achieved using a new data structure called the
zerotree.

• Using the hierarchical wavelet decomposition, we can
relate every coefficient at a given scale to a set of
coefficients at the next finer scale of similar orientation.

• The coefficient at the coarse scale is called the “parent“
while all corresponding coefficients are the next finer
scale of the same spatial location and similar orientation
are called “children".
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The Zerotree Data Structure
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The Zerotree Data Structure
• Given a threshold T, a coefficient x is an element of the

zerotree if it is insignificant and all of its descendants are
insignificant as well.

• The significance map is coded using the zerotree with a
four symbol alphabet:
– The zerotree root: The root of the zerotree is encoded with a

special symbol indicating that the insignificance of the
coefficients at finer scales is completely predictable.

– Isolated zero: The coefficient is insignificant but has some
significant descendants.

– Positive significance: The coefficient is significant with a
positive value.

– Negative significance: The coefficient is significant with a
negative value.
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Successive Approximation
Quantization

Motivation:
• Takes advantage of the efficient encoding of the

significance map using the zerotree data structure by
allowing it to encode more significance maps.

• Produces an embedded code that provides a coarse-to-
fine, multiprecision logarithmic representation of the
scale space corresponding to the wavelet-transformed
image.

• The SAQ method sequentially applies a sequence of
thresholds T0,…,TN−1 to determine the significance of
each coefficient.

• A dominant list and a subordinate list are maintained
during the encoding and decoding process.
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Set Partitioning in
Hierarchical Trees (SPIHT)

• The SPIHT algorithm is an extension of the
EZW algorithm.

• The SPIHT algorithm significantly improved
the performance of its predecessor by changing
the way subsets of coefficients are partitioned and
how refinement information is conveyed.

• A unique property of the SPIHT bitstream is its
compactness.  The resulting bitstream from the
SPIHT algorithm is so compact that passing it through
an entropy coder would only produce very marginal
gain in compression.

• No ordering information is explicitly transmitted to
the decoder. Instead, the decoder reproduces the
execution path of the encoder and recovers the
ordering information.


