ECE 162A
Mat 162A

Lecture #11: Hydrogen like Solutions
and Angular momentum
E/R: Chapter 7

John Bowers
Bowers@ece.ucsb.edu

ECE/Mat 162A



Solution to SE Iin Spherical
Coordinates

ne o,
-——Vy+Vy =Ey
2m
2
IV (r,0,¢) =V (r) = ——— 2
Are, 1

Then try separation of variables
w(r.0,¢) = R(r)0(0)®(¢)
Substitute and divide by RO®

R 1 d,,dR 1 d . do 1 d°d
(r

— SIn6d—) + +V(r)=E
2mR( ( dé?) dresin® g d*¢ (")

2 + 2 A
r<dr dr Or°sind do
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Separate ¢ dependence

Rearrange:

1 d°® 2mr?sin? @ sin’@ d dR.. sin@ d
— == - (E-V(r))- (—(r* =) -
d dg h R dr dr ® do

. de
(sin 9@))

LHS is a function of ¢ only.
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Solution of ®

1 d°® ,

> M

O d g '

O = Ae™’

Single valued means

D(g) = D(g+27)

Which means m Is an integer.
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Separation of r and 6

, 2mr®sin®g _sm ‘0,d  ,dR,, sing d de
-m = 72 (E-V(r)) (dr(r dr)) P de( ))
Rearrange:
2mr (E V())+—(—( —))— ' L (S|n9—))_l(l+1)

sin2@ @sind d@
LHS Is a function of r only and RHS is a function of & only.
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Solution of ®

m,2® 1 de
SIN 6’— =1l +1)®
sin‘ ¢ manH( )) (1+1)

The solution is in Appendix N.
Use a power series expansion in cos 0.
The series terminates for

+1,...

®=sin™ 0 F_ (cosb)

| =|m,|

Im,
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Solution of R

2mr?

— (E—V(r))R+(%(r2Cdl—$)):l(l+1)R

hZ

The solution is in Appendix N.
Use a power series expansion in r.
The series terminates for

(Z=1)

G(x) is a polynomial in x
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E
E, =—n—§
where
2.4
=M C 136V
(4re,)” 2h
n=1+11+2,...

~Zr/na Zr
Ru(r)=e ! O(a_)IGnI (Zr/ao)

0

2
a, = 47;5;? = 525A



Quantum numbers

*N,I,m, are called quantum numbers
*The energy eigenvalue depends only on n, so
N Is called the principle qguantum number.

*The angular momentum depends on |, so
| Is called the azimuthal quantum number.

*The energy in a magnetic field depends on m;, so
m, Is called the magnetic quantum number.
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The first convincing verification of Schrodinger’s theory was this calculations of
eigenvalues, in agreement with experiment, just as Bohr’s model.
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Fine structure splitting

When the spectral lines of the hydrogen
spectrum are examined at very high
resolution, they are found to be closely-
spaced doublets. This splitting is called fine
structure (and was one of the first
experimental evidences for electron spin).

How to explain with Schrodinger’s theory?
(Soon...)

How to explain with Bof
theory?

Sommerfeld’s model:
Attempt to explain using
elliptical orbits. . Treat
relativistically.
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Figure 4-19 The fine-structure splitting of some energy levels of the hydrogen atom. The
splitting is greatly exaggerated. Transitions which produce observed lines of the hydrogen

spectrum are indicated by solid arrows.



Comparison of Solutions

+ co + o

Finite Simple harmonic
square well oscillator
Figure 7-4 A comparison between the allowed
three-dimensional Coulomb potential is sh
the other potentials are one-dimensional.

— D — )

Coulomb

energies of several binding potentials. The
own in a cross-sectional view along a diameter:

E=(n+1/2hv E,=——

v

—

€
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Examination of the solution

* The solution of the spherical potential has
solutions for particular quantum numbers m,,l,n,E

where
m|=012,..
| =|m,|,|m,[+1,...
n=1+11+2,...
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Examination of the solution

* The solution of the spherical potential has
solutions for particular guantum numbers m,l,n,E

where ‘m|‘ =012....
| =|m,|m,|+1,..
n=1+11+2,...
*This Is equivalent to
n=12.3,...
1 =012,..n-1
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Degeneracy of the solution

n=123....
|=012,..n-1
m =-l,-1+1..0..1 -1,

 For each value of n,
— There are n possible values of |

e For each value of |
— There are 2I1+1 values of m

e For each value of n,

— There are n? degenerate eigenfunctions.
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Actual hydrogen atom

e 6 spatial coordinates:

_ Xe’yeize
— Xp:1YprZLp

— What to do? \
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Actual hydrogen atom

e 6 spatial coordinates:

- Xe’ye’ze
— Xp¥Yp:dp

e Switch to center of mass m \
coordinates

 The electron moves
about a stationary, infinite
mass nucleus. The
problem reduces to 3
spatial coordinates

— Xer'YrerZre
— With reduced massu = |\/| L \

= m
K M +m
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3 spatial variables, 3 quantum

numbers
m=9.110""kg
M =1672 10~*kg
A small, but measurable

U= 905 10 kg correction

E
E, =2

where
24
E, = /125 2
(4re,) 2h

Az h’
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L

=13.6eV




Lowest energy solution

e N=1

e |=0

e m=0

e E=-13.6 eV

* There Is only one solution (no degeneracy)

1 (Z )3/2€—Zr/a0

Wioo = \/; a,

* The solution Is spherically symmetric.
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Lowest energy solution

e N=1

e |=0

e m=0

e E=-13.6 eV

* There Is only one solution (no degeneracy)

1 (Z )3/2€—Zr/a0

Wioo = \/; a,

* The solution Is spherically symmetric.

ECE/Mat 162A What is the probability of finding the electron at a distance r?



Second lowest energy solutions

e N=2

e E=-13.6/4=-3.4 eV

 There are four degenerate solutions

e One solution is spherically symmetric.

1 L |35 2\ _7112a
= 2——)e 0
¥ 200 1 /—272 (ao) ( ao)

e One solution is cylindrically symmetric

1 L 312, LF\ _71)2a
= —)e °cosd
W10 4\/5(610) (ao)

Two solutions are degenerate

1 VA r, _ r/'2ay o3 *i
"= (—)¥*(=)e*"* sing e
Worn 8\/; a, a,
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Radial Dep_endence

Energy

Figure 7-6 The qualitative behavior of the kinetic €
energy E of ahydrogen atom, as functions of the size |
more rapidly than V decreases because K oc 1/h
becomes negligible compared to V. As a result, E h
(indicated by the mark on the R axis), and at this Si.
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Figure 7-5 The radial probability density for the electron in a one-electron atom for n =
1, 2, 3 and the values of | shown. The triangle on each abscissa indicates the value of
r, as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales
expanded by a factor of 10 to show the behavior of P,(r) near the origin. Note that in the
three cases for which / =/, =n — 1 the maximum of P,(r) occurs at ry,,, = n’ay/Z,
which is indicated by the location of the dashed line.



Radial Deop_endence

Table 7-2 Some Eigenfunctions for the One-Electron Atom

Quantum Numbers

n I m Eigenfunctions
I° FZN2
1 0 0 W = () o~ Zrlao
100 \/; a,
i fzhe Ve ‘
2.0 0 e e 2 2T - 2ri2a0
4\/2_7'5 a(l a'G
LNy .
2 1 0 Ya10= £ £ g 2r2a0 o6 g
4\/2_75 do dg
1 [(Z\3? 7 , ,
2 1 il 2141 = s ie_zhzausiﬂg()iw
=T 8m \4o ag
1 7\3/2 7 72,2 _
3 0 0 [/jSOG = — (Z) (27 Ey 18 _?‘ + 2 : e—[r;Sag
814371 \9o a ag
5 Z3\3/2 2\ 7
3 1 0 Wag0=— e s —reﬁz’ﬁ“”cosﬂ
81-\/7; L) dg / Ag
1 [Z\37 Zr\Zr _,, ,
3 T +1 Ws141 = il 6_7" le—Zr,BaoSinoeim
T 8147 \ao ao ) aq
1 Z\3/2 72,2 ‘
3 2 0 Y3z = — —s—¢ TRE e g 1)
81+/6m \do ag
1 Z\3/2 72,2 _
3 2+t Y3241 = () 7;‘ e~ Zr30 5in @ cos O et
814/m \do ap
32 +2 Y3242 =

1 JEN=Z Lo
= ( -—) “g—e 7% sin? g gt
162/ \o ap
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Figure 7-5 The radial probability density for the electron in a one-electron atom for n =
1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of
r, as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales
expanded by a factor of 10 to show the behavior of P,,(r) near the origin. Note that in the
three cases for which / =/, =n — 1 the maximum of P,(r) occurs at ry,, = nay/Z,
which is indicated by the location of the dashed line.



[=3m=+1

=3 m =0
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Polar Dependence

= =+1" o =t
l=0,m=0 =l 1=2,my 2

€ z

=3 mp="123 l=4,m = %4

Figure 7-9 Polar diagrams of the directional dependence of the one-electron probability
densities for /=0,1,2, 3, 4, m = £/
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Classical Angular Momentum

- S >

L=rxp
Lx = YP, _Zpy
I—y = ZP, — XP,

I—z — pr o sz
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Angular momentum
(Cartesian coordinates)

Classical
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Quantum Mechanical

L=rxp
(,=-in(y < ~20)
oz oy
" .., O 0
L, =—17(Z——X—
’ ( OX az)



Angular Momentum In Spherical
Coordinates

= —i#(sin 9i+ cotecos¢i)
00 0p

AN

y

= —1h(—Cos 9i+ cotgsin ¢i)
06 ol

Ii\z = _Ih(a_z)
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What Is the z component of angular momentum?

Calculate the g ”d ;
expectation value - j ' rj 0 j pyL
W= RnI (r)®lm,elml¢
I: :—u‘ai
O¢p

Ly =—ih— 0 gimé _ = /im,e™”
5¢

o T 27
= [Ry*(NR, (Nridr[®,, *©,,d6 [d¢ im
0 0 0

L, =7m,
So, the z component of angular momentum has the average value given above.
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What Is the total (squared) angular momentum?

e Calculate the
expectation value

o0 T 27
L? =Ir2drjd9_[d¢ v Ly
0 0 0
W = Rnl(r)®lm,eiml¢
2
L =—h°( _1 g (sin@i)+ _12 62
siné 06 068" sIin“ @ 0°¢
L2y = 1(1 + D2y
L* =1(1+1)#°

)
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Vector picture of angular momentum

e )

The arrow has length \/2(2 +1)
While the vertical component has length 2,1,0,-1,-2

The average value of LxLy is zero.

The energy of the atom does not depend on m, (i.e. orientation
ECE/Mat §¢24hg. Momentum).



Quantization

* We showed that the average value of L, is mn.
That doesn’t mean that L, is quantized.

e However, since »
Ly =—in—e™’ =hme™
5¢

L, =72m,

z

82
L2 hZ |m,¢
ST

— m2 im;¢

=n’m’
 The average ofza set can only equal the

average of the square of the set if all values
are equal. Hence, L, is quantized.
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* In general, if the quantity f has the value F in the
guantum state described by v, then

fy =Fy

. Wheref IS the operator corresponding to f.
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e Note:

N\

Ly =Ly
Lyy # | w

* So L, and L, are not quantized.
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L, L,]=1AL,
L, L, ]=1aL,
L, L ]=1aL,



 Under what conditions can two or more

observable properties of a guantum
system have unique eigenvalues for a
given guantum state?
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* If two operators commute, then the
eigenvalues associated with those
operators are simultaneous eigenvalues.

* If two operators do not commute, then the
eigenvalues associated with those two
operators typically exhibit an uncertainty
relation.
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* |If two operators do not commute, then the
eigenvalues associated with those two
operators typically exhibit an uncertainty
relation.

e EXxception:

 Sometimes the values are zero. For
example for zero total angular momentum,
Lx=Ly=Lz=0
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