ECE 162A Mat 162A

Lecture \#14:Identical particles, multielectron atoms E/R: Chapter 9

John Bowers
Bowers@ece.ucsb.edu

Magnetic moments

- CLASSICALLY, an electron moving in a loop produces a current

$$
\begin{aligned}
& i=\frac{e}{\text { period }} \\
& \text { period }=\frac{\text { dis } \tan c e}{\text { velocity }}=\frac{2 \pi r}{v} \\
& i=\frac{e v}{2 \pi r}
\end{aligned}
$$

- A current in a loop produces a magnetic dipole moment

$$
\underset{\mu=\text { ment }}{\mu=} \text { current } \times \text { area }=i A=\frac{e v}{2 \pi r} \pi r^{2}=\frac{e v r}{2}
$$

Bohr Magneton

- Classically,

$$
\begin{aligned}
& L=m r v \\
& \mu=\frac{e v r}{2}=\frac{e L}{2 m} \\
& \text { If } \\
& \mu_{b} \equiv \frac{e \hbar}{2 m}=.927 \times 10^{-23} \mathrm{Am}^{2} \\
& \mu=\frac{\mu_{b} L}{\hbar}
\end{aligned}
$$

- The correct quantum mechanical result is
- $\left(g_{1}\right.$ is the orbital g factor and $\left.g_{j}=1\right)$

$$
\vec{\mu}=-\frac{g_{l} / \mu_{b}}{\hbar} \vec{L}
$$

Dipole in a Magnetic Field

- The effect of a magnetic field on a magnetic dipole is to exert a torque

$$
\vec{T}=\vec{\mu} \times \vec{B}
$$

- The potential energy is lowest when the dipole is aligned with the magnetic moment

$$
\Delta E=-\vec{\mu} \bullet \vec{B}
$$

- Uniform magnetic field: precession, but no translation.
- Converging magnetic field: translational force.

$$
F_{z}=\frac{\partial B}{\partial z} \mu_{z}
$$

Stern Gerlach Experiment

- Stern Gerlach Exp: Pass a beam of silver atoms through a nonuniform magnetic field and record deflections
- Classical prediction: a range of deflections corresponding to μ_{z} ranging from $+\mu$ to $-\mu$.
- Quantum mechanical prediction: discrete deflections corresponding to $\mathrm{m}_{1}=-1, \ldots 0 . . .1$
- Result: 2 discrete components: one positive, one negative.

ECE/Mat 162A

Phipps/Taylor (1927) Experiment

- Repeat Stern Gerlach Exp with hydrogen atoms in the ground state. $\mathrm{l}=0 . \mathrm{m}_{\mathrm{l}}=0$.
- Quantum mechanical prediction: No deflection corresponding to $m_{1}=0$
- Result: 2 beams, one deflected positive, one negative.
- Something is missing in the theory.

Electron Spin

- Goudsmit and Uhlenbeck (1925), grad students.
- Explain fine splitting of Hydrogen lines by assuming the electron is a small spinning sphere with surface charge i.e. a magnetic moment.

Quantum numbers $s=1 / 2$
Intrinsic angular momentum $S=\sqrt{s(s+1)} \hbar$

- The z component of spin is quantized:

$$
\begin{aligned}
& S_{z}=m_{s} \hbar \\
& m_{s}=-1 / 2,1 / 2
\end{aligned}
$$

ECE/Mat 162A

$$
g_{l}=2
$$

Spin Orbit Interaction

- The spin orbit interaction is the result of the electron spin magnetic moment and the internal magnetic field of the atom due to the electrons angular momentum.

$$
\Delta E=\frac{1}{2 m^{2} c^{2} r} \frac{d V}{d r} \vec{S} \bullet \vec{L}
$$

- This is typically about $10^{-4} \mathrm{eV}$. This splitting is called fine structure.

Total Angular Momentum

$$
\vec{J}=\vec{L}+\vec{S}
$$

-8-8 page 282
-Due to the spin orbit interaction, L and S are not independent. The spin orbit interaction causes a coupling between L and S and a precession about the axes.
-The total angular momentum is fixed and quantized.
-The z component of total angular momentum is quantized.

Total Angular Momentum
 $$
\vec{J}=\vec{L}+\vec{S}
$$

The total angular momentum in terms of quantum number j

$$
J=\sqrt{j(j+1)} \hbar
$$

The z component of angular momentum is

$$
J_{z}=m_{j} \hbar
$$

Where the quantum number m_{j} is

$$
m_{j}=-j, \ldots 0 \ldots j
$$

How does j relate to I and s?

$$
\begin{aligned}
& |\vec{L}+\vec{S}| \geq|\vec{J}| \geq|\vec{L}-\vec{S}| \\
& \sqrt{l(l+1)}+\sqrt{s(s+1)} \geq \sqrt{j(j+1)} \geq \sqrt{l(l+1)}-\sqrt{s(s+1)}
\end{aligned}
$$

The result of this inequality is that j can have two values:

$$
j=l+1 / 2, l-1 / 2
$$

When $I=0$, then there is only one value of j :

$$
j=1 / 2
$$

Hydrogen spectra

- The spectra of hydrogen show a fine structure which is well explained by Schroedinger's equation with spin.
- There is also a hyperfine structure, which is due to the spin of the nucleus.

Identical Particles

- In classical physics, particles can be followed, and hence labels can be attached to each.
- In quantum physics, measurable results obtained from calculations should not depend on the assignment of labels to identical particles.

Example: Two identical particles in a box-no interaction between particles

$x_{1} \quad$ The position of particle 1
$x_{2} \quad$ The position of particle 2
$V\left(x_{1}, x_{2}\right)=0$ for $0<x_{1}, x_{2}<L ; \infty$ otherwise
$\left[-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}}+\frac{d^{2}}{d x_{2}^{2}}\right)+V\left(x_{1}, x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)$

Example: Two identical particles in a box-no interaction between particles

$$
\begin{aligned}
& V\left(x_{1}, x_{2}\right)=0 \text { for } 0<x_{1}, x_{2}<L ; \infty \text { otherwise } \\
& {\left[-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}}+\frac{d^{2}}{d x_{2}^{2}}\right)+V\left(x_{1}, x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)}
\end{aligned}
$$

This is separable since V depends on only one particle at a time.

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)
$$

This can be substituted into SE, and the solution is

$$
\begin{aligned}
& \psi_{n 1}\left(x_{1}\right)=A_{1} \sin \frac{n_{1} \pi x_{1}}{L} \\
& \psi\left(x_{1}, x_{2}\right)=A_{3} \sin \frac{n_{1} \pi x_{1}}{L} \sin \frac{n_{2} \pi x_{2}}{L}
\end{aligned}
$$

But, this is not symmetric under exchange of $1 \rightarrow 2$

Example: Two identical particles in a box-no interaction between particles

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)
$$

This wavefunction is symmetric under exchange $1 \rightarrow 2$

$$
\psi_{S}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)+\psi_{n 2}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)
$$

This wavefunction changes sign under exchange, so $\psi * \psi$ is the same under exchange.

$$
\psi_{A}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)-\psi_{n 2}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)
$$

Pauli Exclusion Principle

- In a multielectron atom, there can never be more than one electron in the same quantum state.
- Note that this is satisfied automatically by the antisymmetric state:

$$
\begin{aligned}
& \psi_{S_{n 1 n 1}}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)+\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)=\sqrt{2} \psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right) \\
& \psi_{A_{n 1 n 1}}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)-\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)=0
\end{aligned}
$$

- A system containing several electrons must be described by an antisymmetric total eigenfuriction.
- Fermions: particles with half integral spin (1/2,3/2, ...) such as electrons and protons. Fermions obey the Pauli exclusion principle and have antisymmetric wavefunctions.
- Bosons: particles with integral spin (0, $1, \ldots$) such as photons, They need not obey the Pauli Exclusion Principle and have symmetric wavefunctions.

How to include spin as a quantum number?

- Spatial variables (x, y, z) are continuous.
- Spin is discrete, either up or down (+1/2 or $-1 / 2$).
- Wave function is a product of the spatial wavefunction and the spin wavefunction.
- Antisymmetric wave function can be achieved by:
- Antisymmetric spin wavefunction, symmetric space wavefunction
- Symmetric spin wavefunction, antisymmetric space wavefunction

Spin wave functions

- Antisymmetric (singlet state)

$$
\frac{1}{\sqrt{2}}(|1 / 2,-1 / 2\rangle-|-1 / 2,+1 / 2\rangle)
$$

- Symmetric (triplet state)

$$
\begin{array}{ll}
& |1 / 2,1 / 2\rangle \\
& \frac{1}{\sqrt{2}}(|1 / 2,-1 / 2\rangle+|-1 / 2,1 / 2\rangle) \\
\text { ECEMMat 162A } & |-1 / 2,-1 / 2\rangle
\end{array}
$$

Spatial Antisymmetric States

- Wavefunctions goes to zero at the symmetry point.
- Apparent repulsive force (exchange force)

Spatial Symmetric States

- Wavefunctions does not go to zero at the symmetry point.

Spatial Antisymmetric States

- Wavefunctions goes to zero at the symmetry point.
- Apparent repulsive force (exchange force)

Spatial Symmetric States

- Wavefunctions does not go to zero at the symmetry point.

Spins aligned: Apparent repulsive force.
Spins opposite: No repulsive force.

