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ldentical Particles

* In classical physics, particles can be
followed, and hence labels can be
attached to each.

* In quantum physics, measurable results
obtained from calculations should not
depend on the assignment of labels to
iIdentical particles.
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Example: Two identical particles in a
box-no interaction between particles

X,  The position of particle 1
X,  The position of particle 2

V (X, X%,)=0for 0<x,X, <L; otherwise
h’  d? d2

[_ ( 2
2m dx; d

)+V (X, X) v (X, X,) = Ew (X, %,)
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Example: Two identical particles in a
box-no interaction between particles

V(x,,X,)=0for 0<x,X, <L;oo otherwise

h°  d®  d?
[- om (dX2 + dX2)+V (X0 X)) (X, %) = By (X, X,)
1 2

This is separable since V depends on only one particle at a time.
W (X, X,) = W (X)W, (X,)

This can be substituted into SE, and the solution is
v (%) = Asin ”1—’LZX1

N, 72X,
L

But, this is not symmetric under exchange of 1->2
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Example: Two identical particles in a
box-no interaction between particles

W (X, %) =W (X)W 15 (%)

This wavefunction is symmetric under exchange 1->2

Vs (%, %) =%(m(xl)wnz(xz)+wn2<x1)wm<xz»

This wavefunction changes sign under exchange, so y*y is the same
under exchange.
1
A%, X,) = ﬁ (W o (X)W 10 (X)) =1, (X)W 1 (X5)
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Pauli Exclusion Principle

* |n a multielectron atom, there can never be more than one
electron in the same quantum state.

* Note that this is satisfied automatically by the
antisymmetric state:

Vs nlnl(Xl’ X,) = % (W (X)W (%) w7 (X)) (X,)) = \/El//nl(xl)‘//nl(xz)

l//Anlnl(Xl’ X,) = % (W (X)W (%) = (X)w (%,)) =0

« A system containing several electrons must be
described by an antisymmetric total eigenfunction.
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* Fermions: particles with half integral spin
(1/2,3/2,...) such as electrons and protons.
Fermions obey the Pauli exclusion
principle and have antisymmetric
wavefunctions.

* Bosons: particles with integral spin (0O,
1,...) such as photons, They need not
obey the Pauli Exclusion Principle and
have symmetric wavefunctions.
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Multi-Electron Wave-functions
Independent Particle Approximation

For a system with two electrons:
Total Wave-function = (Spatial Component) X (Spin Component)
Independent electrons:
Spatial Component = W,(1) X W5(2)

*Separation of Variables can be applied to the two-particle Hamiltonian if
electrons are independent

» Also a consequence of the fact that the joint distribution of two
independent random variables is a product of their individual distributions



Multi-Electron Wave-functions
Independent Particle Approximation

For a system with two electrons:
Total Wave-function = (Spatial Component) X (Spin Component)
Independent electrons:
Spatial Component = W,(1) X W5(2)
 Labels (1) and (2) represent the two electrons
* A and B represent the energy levels they occupy respectively
* This state does not go into % itself on interchange of 1 and 2

* Problem: However, electrons are indistinguishable!

« |W|? is physically measurable, must not depend on electron labeling



Multi-Electron Wave-functions
Independent Particle Approximation

Fix: Linear Combinations of Degenerate Solutions
Spatial Component = (1/2)"2[W,(1) W5(2) £ W(1) WA(2) ]

* Labels (1) and (2) represent the two electrons
* A and B represent the energy levels they occupy respectively
* This state goes into = itself on interchange of 1 and 2

 Both physically acceptable, one (+) symmetric and the other (-)
anti-symmetric under exchange



Multi-Electron Wave-functions
Independent Particle Approximation

For a system with two electrons:
Total Wave-function = (Spatial Component) X (Spin Component)

Spin Component
Terminology: |2, -72 >

» Meaning: The first electron is spin-up, the second is spin-down

 Again there is lack of symmetry on exchange of particles 1 and 2



Multi-Electron Wave-functions
Independent Particle Approximation

Spin Component, Contd.
Problem: Lack of Exchange Symmetry
Fix:
» Spin-symmetric states — Triplet:
V2, Vo >
|-V, -V2 >
(1/2)V2] |Ve, -Vo > + |-V2, Vo > ]

« Spin-anti-symmetric state: (1/2)"2[ |2, -2 > - |-V, V2 > ]



Hartree Theory

Multielectron atomic theory

First consider a nuclear attractive coulombic
force: +Ze

Include the coulombic repulsion due to the
average position of other electrons: -(Z-1)e

Assume each electron moves independently of
each other.

Schroedinger’'s equation becomes separable
iInto Z separate equations for the motion of
each electron: 2

-——Vy+V(ny =Ey
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What is V(r)?

* First guess:
— For r=>0,

2
V(r) = e
Arre ¥
— For r=2>infinity
2
V(r) = ——
Are,r

* Then, solve SE and calculate V(r)
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Hartree Solution

« Assume V(r) (previous slide)
« (Calculate the solutions

Vo (1,0.8).0,(r,0,4),,(1,0,4)...
with energies

E,.E; E ..
« Put one electron in each state. Soln is the product of

one electron states.
Y= l//a(rl’el’¢l)’l//ﬂ(r2’62’¢2)1W;/(r3’931¢3)""

* Note: o,f,y includes space and spin
a:n=11=0;m =O,T>

In=11=0;m, :O,¢>
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Hartree Solution (cont)

« Use y*y to calculate V(r)
* |terate:

— Soln SE using new V/(r) 22; : Argon
. 20( [\
— Put one electron in each mrui i
state to assemble vy lslf‘L’ |
Y
— Calculate V(r) wfh e
o\ '
I‘T\m —\\ \
SR \\‘ \
-
8 \ \
6'— \\\‘\ -
| N TN
4f- \\ AN
2 L A )\\\ \\\\\ -.\..._\_k ___________ 3
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Hartree Fock Theory

* Hartree theory ignores the requirement of
antisymmetric wave functions.

 Fock included this.

* For a N electron atom, N! terms are added
in the expression for vy (ltisan N
dimensional Slater determinant).

* The effect is only significant for the
valence electrons.
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®—-¢ Dependence

 The ®—¢ dependence is the same as for
the hydrogen atom since we didn’t assume
anything for the form of V(r).
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Solution to SE in Spherical
Coordinates

ne o,
-——Vy+Vy =Ey
2m
2
IV (r,0,¢) =V (r) = ——— 2
Are, 1

Then try separation of variables
w(r.0,¢) = R(r)0(0)®(¢)
Substitute and divide by RO®

R 1 d,,dR 1 d ,. dB 1 d*d
(r

— SIn6d—) + +V(r)=E
2mR( ( dé?) dresin® g d*¢ (")

2 + 2 A
r<dr dr Or°sind do
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Separate ¢ dependence

Rearrange:

1 d°® 2mr?sin? @ sin’@ d dR.. sin@ d
— == - (E-V(r))- (—(r* =) -
d dg h R dr dr ® do

. de
(sin «9@))

LHS is a function of ¢ only.

No assumption on the form of V(r)!
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Solution of ©

No assumption on the form of V(r)!

1 d°® ,

> M

O d g '

O = Ae™’

Single valued means

D(g) = D(g+27)

Which means m Is an integer.
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Separation of r and 6

, 2mr®sin®g _sm ‘0,d  ,dR,, sing d de
-m = 72 (E-V(r)) (dr(r dr)) P de( ))
Rearrange:
2mr (E V())+—(—( —))— ' L (S|n9—))_l(l+1)

sin2@ @sind d@
LHS Is a function of r only and RHS is a function of & only.

No assumption on the form of V(r)!
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Solution of ®

me 1 d,. do
sind—))=1({1+1)®
sin“d sin@ dH( dé’)) (1+1)

The solution is in Appendix N.
Use a power series expansion in cos 0.
The series terminates for

| =|m,|,|m, +1,...
®=sin™ 0 F (cos0)

No assumption on the form of V(r)!
ECE/Mat 162A




Results of Hartree Theory

 Eigenfunctions labeled by n,I,m,m,m,
« (E will not be given by E,/n?)
* Important for solid state physics.

* Numerical calculation programs exist for
Hartree and Hartree-Foch
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Labeling of energy levels (shells)

* N=1,I1=0 1s 2 states (up, down) H,He
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Labeling of energy levels (shells)

* N=1,I1=0 1s 2 states (up, down) H,He
 N=2,I1=0 2s 2 states (up, down) Li,Mg
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Labeling of energy levels (shells)

* N=1,I1=0
* N=2,I1=0
* N=2, |=1
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1s
2S
2p

2 states (up, down) H,He
2 states (up, down) Li,Mg
6 states (2x(m=-1,0,1))
B,C,N, O, F, Ne



Labeling of energy levels (shells)

N=1,1=0
N=2,1=0
N=2, |=1
N=3, =0
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1s
2S
2p
3S

2 states (up, down) H,He
2 states (up, down) Li,Mg
6 states (2x(m=-1,0,1))

2 states (2x(m=0))



Labeling of energy levels (shells)
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1s
2S
2p
3s
3p

2 states (up, down) H,He
2 states (up, down) Li,Mg
6 states (2x (ml—-1 0,1))
2 states (2x(m=0))
6 states (2x(m|—-1 0,1))



Order and Labeling of energy
levels (shells)

N=1,I=0
N=2,1=0
N=2, |=1
N=3, I=0
N=3, |=1
N=4, 1=0
N=3, |=2
N=4, |=1
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1s
2S
2p
3S
3p
4s
3d
4p

2 states (up, down) H,He
2 states (up, down) Li,Mg
6 states (2x(m=-1,0,1))

2 states (2x(m=0))

6 states (2x(m|—-1 0,1))

2 states (2x(m=0))

10 states

6 states (

(2x(m,——2 -1,0,1,2))
2x(m=-1,0,1))



Order and Labeling of energy
levels (shells)
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1s
2S
2p
3s
3p
4s
3d
4p
S
op
6s
4f

2 states
2 states
6 states
2 states
6 states
2 states
10 states
6 states
2 states
6 states
2 states
14 states



Chemistry

* Inner electrons affected by nucleus, not
other atoms

» Quter electrons see a potential of +e or
+2e and are affected by adjacent atoms.

* The outer electrons are called valence
electrons and are involved in bonding to
other atoms.

 Atoms with the same valence structure
behave similarly chemically.
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Periodic Table

1s

2s

3s

4s

bs

6s

7s

(Mendeleev in 1869

1 2
H He
3 4 5 & 7 8 9 10
Li Be 2p B c N 0 F Ne
11 12 13 14 15 16 17 18
Na Mg 3p| A Si P 5 ci A
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K Ca 3d Sc Ti v Cr Mn Fe Co Ni Cu Zn 4p Ga Ge As Se Br Kr
4s'347 4513410
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb Sr 4d Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Sp in Sn Sh Te | Xe
5s'4d? 5514d7 | 551448 5594410 5514410
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs | Ba sdf 2 1 W | Ta | w | Re | o Ir Pt | au [ Hg | 6p| Ti Pb [ B | Po | At Rn
nides 651549 65! 5410
87 88 89
Fr Ra 6d| Ac 7p
Actinides
st s dl d? a3 d* db db d7 a8 d*? a1 B p2 p3 p pd P8
58 59 60 61 62 63 64 65 66 67 68 69 70 71
4f1 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Lanthanides 5d04f2 5d04f3 5d04f4 5d04f5 5d04f6 5d04f7 5dl4f7 5d04f9 5d°4f1° 5d04f11 5d04f12 5d04/]3 5d04f14 5d14f14
90 91 92 93 94 95 96 97 98 99 100 101 102 103
5f Th Pa U Np Pu Am Cm Bk cf Es Fm Md No Lw
Actinides {6425 | 6d'5f2 [ 6a1573 | 64157 [ 601575 | 6d" 56 6215¢7 | 65/ |6d%571%|64°511 | 647572 | 64°5/13| 640514 {6al 5514
fl f2 f3 f‘ f5 fﬁ f? fB f9 le fll i.-12 f]3 ,.—14




Band Theory of Solids

* |solated atom (B)

2p
2s

1s

ECE/Mat 162A



Band Theory of Solids

e |solated =2 atoms "

2S

1s
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Band Theory of Solids

* |solated - solid

2p
- Splitting higher for 2s
outer electrons; more
overlap.
1s —

« Splitting increases as
the separation
decreases.
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Energy Bands

Bands that originate from
closed shells (e.g. 1s, 2s for
boron) have filled bands

Shells that are partially filled
result in bands that are
partially filled.

Filled bands give insulators

Partially filled bands give
metals.

Filled bands with empty bands
close by (0.1 to 3 eV) are
called semiconductors.

Materials with odd number of
electrons/atom are always
metals.
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Energy (eV)

=35, 367 5 10

interatomic distance (i)



Quantum Statistics

« How are electrons distributed versus energy?
« Classical answer: Maxwell Boltzman distribution

P(E)= Ae '

 However, this has most electrons at low energies,
which violates the Pauli exclusion principle.
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Quantum Statistics

« How are electrons distributed versus energy?
« Classical answer: Maxwell Boltzman distribution

P(E)=Ae ™'

* Quantum mechanical answer: Fermi Dirac distribution

P(E)
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AI

P(E) =

Boltzmann 1+ e(E Bo) /KT

\ \Ferml Dirac




Flectron distribution

N (&) N &)
//// ////
~ P
-~ 7
0 & 0
n(&)
n(&) | kT
1 e ——— - —_—. _l bt = — s — —— \
| \
| & [N
0 Er Er
n(€) N&) n(&) N&E)
Unfilted levels Unfilled levels
Fitled levels \ Filied levels \"§
: &
0 Exp & nax
T=0 T>0
"dE N(E)f (E)
—00

ECE/Mat 162A



Conduction

A filled band has no net current flow. For every
electron going in one direction, there is an
electron going in the opposite direction.

* In general (for electron conduction only),
n=[ dE N(E)f(E)

j=env
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