ECE 162A Mat 162A

Lecture \#15:Identical particles, multielectron atoms
 E/R: Chapter 9

John Bowers

Bowers@ece.ucsb.edu

Lecture Today, Thursday, Friday (1 pm)

Identical Particles

- In classical physics, particles can be followed, and hence labels can be attached to each.
- In quantum physics, measurable results obtained from calculations should not depend on the assignment of labels to identical particles.

Example: Two identical particles in a box-no interaction between particles

$x_{1} \quad$ The position of particle 1
$x_{2} \quad$ The position of particle 2

$$
\begin{aligned}
& V\left(x_{1}, x_{2}\right)=0 \text { for } 0<x_{1}, x_{2}<L ; \infty \text { otherwise } \\
& {\left[-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}}+\frac{d^{2}}{d x_{2}^{2}}\right)+V\left(x_{1}, x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)}
\end{aligned}
$$

Example: Two identical particles in a box-no interaction between particles

$$
\begin{aligned}
& V\left(x_{1}, x_{2}\right)=0 \text { for } 0<x_{1}, x_{2}<L ; \infty \text { otherwise } \\
& {\left[-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}}+\frac{d^{2}}{d x_{2}^{2}}\right)+V\left(x_{1}, x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)}
\end{aligned}
$$

This is separable since V depends on only one particle at a time.

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)
$$

This can be substituted into SE, and the solution is

$$
\begin{aligned}
& \psi_{n 1}\left(x_{1}\right)=A_{1} \sin \frac{n_{1} \pi x_{1}}{L} \\
& \psi\left(x_{1}, x_{2}\right)=A_{3} \sin \frac{n_{1} \pi x_{1}}{L} \sin \frac{n_{2} \pi x_{2}}{L}
\end{aligned}
$$

But, this is not symmetric under exchange of $1 \rightarrow 2$

Example: Two identical particles in a box-no interaction between particles

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)
$$

This wavefunction is symmetric under exchange $1 \rightarrow 2$

$$
\psi_{S}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)+\psi_{n 2}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)
$$

This wavefunction changes sign under exchange, so $\psi * \psi$ is the same under exchange.

$$
\psi_{A}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 2}\left(x_{2}\right)-\psi_{n 2}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)
$$

Pauli Exclusion Principle

- In a multielectron atom, there can never be more than one electron in the same quantum state.
- Note that this is satisfied automatically by the antisymmetric state:

$$
\begin{aligned}
& \psi_{S_{n 1 n 1}}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)+\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)=\sqrt{2} \psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right) \\
& \psi_{A_{n 1 n 1}}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)-\psi_{n 1}\left(x_{1}\right) \psi_{n 1}\left(x_{2}\right)\right)=0
\end{aligned}
$$

- A system containing several electrons must be described by an antisymmetric total eigenfunction.
- Fermions: particles with half integral spin (1/2,3/2, ...) such as electrons and protons. Fermions obey the Pauli exclusion principle and have antisymmetric wavefunctions.
- Bosons: particles with integral spin (0, $1, \ldots$) such as photons, They need not obey the Pauli Exclusion Principle and have symmetric wavefunctions.

Multi-Electron Wave-functions Independent Particle Approximation

For a system with two electrons:
Total Wave-function $=($ Spatial Component $) X($ Spin Component $)$ Independent electrons:
Spatial Component $=\Psi_{A}(1) X \Psi_{B}(2)$

-Separation of Variables can be applied to the two-particle Hamiltonian if electrons are independent

- Also a consequence of the fact that the joint distribution of two independent random variables is a product of their individual distributions

Multi-Electron Wave-functions Independent Particle Approximation

For a system with two electrons:
Total Wave-function = (Spatial Component) X (Spin Component)
Independent electrons:
Spatial Component $=\Psi_{A}(1) X \Psi_{B}(2)$

- Labels (1) and (2) represent the two electrons
- A and B represent the energy levels they occupy respectively
- This state does not go into \pm itself on interchange of 1 and 2
- Problem: However, electrons are indistinguishable!
- $|\Psi|^{2}$ is physically measurable, must not depend on electron labeling

Multi-Electron Wave-functions Independent Particle Approximation

> Fix: Linear Combinations of Degenerate Solutions Spatial Component $=(1 / 2)^{1 / 2}\left[\Psi_{A}(1) \Psi_{B}(2) \pm \Psi_{B}(1) \Psi_{A}(2)\right]$

- Labels (1) and (2) represent the two electrons
- A and B represent the energy levels they occupy respectively
- This state goes into \pm itself on interchange of 1 and 2
- Both physically acceptable, one (+) symmetric and the other (-) anti-symmetric under exchange

Multi-Electron Wave-functions Independent Particle Approximation

For a system with two electrons:
Total Wave-function $=($ Spatial Component $) \times($ Spin Component $)$

Spin Component

Terminology: $\mid 1 / 2,-1 / 2>$

- Meaning: The first electron is spin-up, the second is spin-down
- Again there is lack of symmetry on exchange of particles 1 and 2

Multi-Electron Wave-functions Independent Particle Approximation

Spin Component, Contd.
Problem: Lack of Exchange Symmetry
Fix:

- Spin-symmetric states - Triplet:

$$
\begin{aligned}
& |1 / 2,1 / 2\rangle \\
& |-1 / 2,-1 / 2\rangle \\
& \left.(1 / 2)^{1 / 2}\left[\left.\right|^{1 / 2},-1 / 2\right\rangle+|-1 / 2,1 / 2\rangle\right]
\end{aligned}
$$

- Spin-anti-symmetric state: $(1 / 2)^{1 / 2}[|1 / 2,-1 / 2>-|-1 / 2,1 / 2>]$

Hartree Theory

- Multielectron atomic theory
- First consider a nuclear attractive coulombic force: +Ze
- Include the coulombic repulsion due to the average position of other electrons: -(Z-1)e
- Assume each electron moves independently of each other.
- Schroedinger's equation becomes separable into Z separate equations for the motion of each electron:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(r) \psi=E \psi
$$

What is $\mathrm{V}(\mathrm{r})$?

- First guess:
- For $r \rightarrow 0$,

$$
V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}
$$

- For $r \rightarrow$ infinity

$$
V(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0} r}
$$

- Then, solve SE and calculate $\mathrm{V}(\mathrm{r})$

Hartree Solution

- Assume V(r) (previous slide)
- Calculate the solutions

$$
\psi_{\alpha}(r, \theta, \phi), \psi_{\beta}(r, \theta, \phi), \psi_{\gamma}(r, \theta, \phi), \ldots
$$

with energies

$$
E_{\alpha}, E_{\beta}, E_{\gamma}, \ldots
$$

- Put one electron in each state. Soln is the product of one electron states.

$$
\psi=\psi_{\alpha}\left(r_{1}, \theta_{1}, \phi_{1}\right), \psi_{\beta}\left(r_{2}, \theta_{2}, \phi_{2}\right), \psi_{\gamma}\left(r_{3}, \theta_{3}, \phi_{3}\right), \ldots
$$

- Note: α, β, γ includes space and spin

$$
\begin{aligned}
& \alpha:\left|n=1 ; l=0 ; m_{l}=0, \uparrow\right\rangle \\
& \beta:\left|n=1 ; l=0 ; m_{l}=0, \downarrow\right\rangle
\end{aligned}
$$

Hartree Solution (cont)

- Use $\psi * \psi$ to calculate $\mathrm{V}(\mathrm{r})$
- Iterate:
- Soln SE using new $\mathrm{V}(\mathrm{r})$
- Put one electron in each state to assemble ψ
- Calculate V(r)

ECE/Mat 162A

Hartree Fock Theory

- Hartree theory ignores the requirement of antisymmetric wave functions.
- Fock included this.
- For a N electron atom, N ! terms are added in the expression for ψ (It is an N dimensional Slater determinant).
- The effect is only significant for the valence electrons.

$\Theta-\phi$ Dependence

- The $\Theta-\phi$ dependence is the same as for the hydrogen atom since we didn't assume anything for the form of $V(r)$.

Solution to SE in Spherical Coordinates

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi \\
\text { If } V(r, \theta, \phi)=V(r)=-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r}
\end{gathered}
$$

Then try separation of variables

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

Substitute and divide by $R \Theta \Phi$
$-\frac{\hbar^{2}}{2 m R}\left(\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)\right)+\frac{1}{\Theta r^{2} \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\frac{1}{\Phi r^{2} \sin ^{2} \theta} \frac{d^{2} \Phi}{d^{2} \phi}+V(r)=E$

Separate ϕ dependence

Rearrange:

$$
\begin{gathered}
\left.\frac{1}{\Phi} \frac{d^{2} \Phi}{d^{2} \phi}=-\frac{2 m r^{2} \sin ^{2} \theta}{\hbar^{2}}(E-V(r))-\frac{\sin ^{2} \theta}{R}\left(\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)\right)-\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\right) \\
\text { LHS is a function of } \phi \text { only. }
\end{gathered}
$$

No assumption on the form of $\mathrm{V}(\mathrm{r})$!

Solution of Φ

No assumption on the form of $\mathrm{V}(\mathrm{r})$!

$$
\begin{aligned}
& \frac{1}{\Phi} \frac{d^{2} \Phi}{d^{2} \phi}=-m_{l}^{2} \\
& \Phi=A e^{i m_{l} \phi}
\end{aligned}
$$

Single valued means
$\Phi(\phi)=\Phi(\phi+2 \pi)$
Which means m is an integer.

Separation of r and θ

$$
\begin{aligned}
& \left.-m_{l}^{2}=-\frac{2 m r^{2} \sin ^{2} \theta}{\hbar^{2}}(E-V(r))-\frac{\sin ^{2} \theta}{R}\left(\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)\right)-\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\right) \\
& \quad \text { Re arrange: } \\
& \left.-\frac{2 m r^{2}}{\hbar^{2}}(E-V(r))+\frac{1}{R}\left(\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)\right)=\frac{m_{l}^{2}}{\sin ^{2} \theta}-\frac{1}{\Theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\right) \equiv l(l+1)
\end{aligned}
$$

LHS is a function of r only and RHS is a function of θ only.
No assumption on the form of $\mathrm{V}(\mathrm{r})$!

ECE/Mat 162A

Solution of Θ

$\left.\frac{m_{l}^{2} \Theta}{\sin ^{2} \theta}-\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\right)=l(l+1) \Theta$

The solution is in Appendix N .
Use a power series expansion in $\cos \theta$.
The series terminates for

$$
\begin{aligned}
& l=\left|m_{l}\right|,\left|m_{l}+1\right|, \ldots \\
& \Theta=\sin ^{m_{l}} \theta F_{l m_{l}}(\cos \theta)
\end{aligned}
$$

No assumption on the form of $\mathrm{V}(\mathrm{r})$!

Results of Hartree Theory

- Eigenfunctions labeled by n, l, m, m_{l}, m_{s}
- (E will not be given by E_{0} / n^{2})
- Important for solid state physics.
- Numerical calculation programs exist for Hartree and Hartree-Foch

Labeling of energy levels (shells)

- $N=1, I=0 \quad 1 \mathrm{~s} 2$ states (up, down) H, He

Labeling of energy levels (shells)

- $N=1, I=0 \quad 1 \mathrm{~s} 2$ states (up, down) H, He
- $\mathrm{N}=2, \mathrm{l}=0 \quad 2 \mathrm{~s} \quad 2$ states (up, down) Li, Mg

Labeling of energy levels (shells)

- $\mathrm{N}=1, \mathrm{l}=0 \quad 1 \mathrm{~s} \quad 2$ states (up, down) H, He
- N=2,I=0 2s 2 states (up, down) Li,Mg
- $N=2, l=1 \quad 2 p \quad 6$ states $\left(2 x\left(m_{1}=-1,0,1\right)\right)$

B, C, N, O, F, Ne

ECE/Mat 162A

Labeling of energy levels (shells)

- $\mathrm{N}=1, \mathrm{l}=0 \quad 1 \mathrm{~s} \quad 2$ states (up, down) H, He
- $\mathrm{N}=2, \mathrm{l}=0 \quad 2 \mathrm{~s} \quad 2$ states (up, down) Li,Mg
- $N=2, l=1 \quad 2 p \quad 6$ states $\left(2 x\left(m_{1}=-1,0,1\right)\right)$
- $\mathrm{N}=3, \mathrm{l}=0 \quad 3 \mathrm{~s} \quad 2$ states $\left(2 x\left(\mathrm{~m}_{\mathrm{l}}=0\right)\right)$

Labeling of energy levels (shells)

- $\mathrm{N}=1, \mathrm{l}=0 \quad 1 \mathrm{~s} \quad 2$ states (up, down) H, He
- $\mathrm{N}=2, \mathrm{l}=0 \quad 2 \mathrm{~s} \quad 2$ states (up, down) Li, Mg
- $N=2, l=1 \quad 2 p \quad 6$ states $\left(2 x\left(m_{1}=-1,0,1\right)\right)$
- $\mathrm{N}=3, \mathrm{l}=0 \quad 3 \mathrm{~s} \quad 2$ states $\left(2 x\left(m_{\mathrm{l}}=0\right)\right)$
- $N=3, l=1 \quad 3 p \quad 6$ states $\left(2 x\left(m_{1}=-1,0,1\right)\right)$

Order and Labeling of energy levels (shells)

- $N=1, I=0 \quad 1 \mathrm{~s} 2$ states (up, down) H, He
- $\mathrm{N}=2, \mathrm{l}=0 \quad 12 \mathrm{~s} \quad 2$ states (up, down) Li,M
- $\mathrm{N}=3, \mathrm{l}=0 \quad 3 \mathrm{~s} \quad 2$ states $\left(2 \times\left(\mathrm{m}_{\mathrm{l}}=0\right)\right)$
- $N=3, l=1 \quad 3 p \quad 6$ states $\left(2 x\left(m_{1}=-1,0,1\right.\right.$
- $\mathrm{N}=3, \mathrm{l}=2 \quad 3 \mathrm{~d} \quad 10$ states $\left(2 x\left(\mathrm{~m}_{\mathrm{l}}=-2,-1,0,1,2\right)\right)$
- $N=4, I=1 \quad 4 p \quad 6$ states $\left(2 x\left(m_{1}=-1,0,1\right)\right)$

ECE/Mat 162A

Order and Labeling of energy levels (shells)

- $\mathrm{N}=1, \mathrm{l}=0$
- $\mathrm{N}=2, \mathrm{l}=0$
- $N=2,1=1$
- $N=3, \mathrm{l}=0$
- $N=3, \mathrm{l}=1$
- $N=4, I=0$
- $N=3, \mathrm{l}=2$
- $N=4, I=1$
- $N=5, \mathrm{l}=0$
- $N=5, \mathrm{l}=1$
- $N=6, \mathrm{l}=0$

1s 2 states
2s 2 states
2p 6 states
3s 2 states
$3 p \quad 6$ states
4 s 2 states
3d 10 states
4 p 6 states
5s 2 states
$5 \mathrm{p} \quad 6$ states
6 s 2 states
$4 \mathrm{f} \quad 14$ states

Chemistry

- Inner electrons affected by nucleus, not other atoms
- Outer electrons see a potential of +e or $+2 e$ and are affected by adjacent atoms.
- The outer electrons are called valence electrons and are involved in bonding to other atoms.
- Atoms with the same valence structure behave similarly chemically.

Periodic Table (Mendeleev in 1869)

Band Theory of Solids

- Isolated atom (B)

Band Theory of Solids

- Isolated $\rightarrow 2$ atoms

Band Theory of Solids

- Isolated \rightarrow solid
- Splitting higher for outer electrons; more overlap.
- Splitting increases as the separation
 decreases.

Energy Bands

- Bands that originate from closed shells (e.g. 1s, 2s for boron) have filled bands
- Shells that are partially filled result in bands that are partially filled.
- Filled bands give insulators
- Partially filled bands give metals.
- Filled bands with empty bands close by (0.1 to 3 eV) are called semiconductors.
- Materials with odd number of electrons/atom are always metals.

Quantum Statistics

- How are electrons distributed versus energy?
- Classical answer: Maxwell Boltzman distribution

$$
P(E)=A e^{-E / k T}
$$

- However, this has most electrons at low energies, which violates the Pauli exclusion principle.

Quantum Statistics

- How are electrons distributed versus energy?
- Classical answer: Maxwell Boltzman distribution

$$
P(E)=A e^{-E / k T}
$$

- Quantum mechanical answer: Fermi Dirac distribution

ECE/Mat 162A

Electron distribution

ECE/Mat 162A

Conduction

- A filled band has no net current flow. For every electron going in one direction, there is an electron going in the opposite direction.
- In general (for electron conduction only),

$$
\begin{aligned}
n & =\int_{-\infty}^{\infty} d E N(E) f(E) \\
j & =\text { env }
\end{aligned}
$$

