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Identical ParticlesIdentical Particles

• In classical physics particles can beIn classical physics, particles can be 
followed, and hence labels can be 
attached to eachattached to each.

I t h i bl lt• In quantum physics, measurable results 
obtained from calculations should not 
d d th i t f l b l tdepend on the assignment of labels to 
identical particles.  
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Example: Two identical particles in a 
b i t ti b t ti lbox-no interaction between particles
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Example: Two identical particles in a 
b i t ti b t ti lbox-no interaction between particles
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This is separable since V depends on only one particle at a time.
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But, this is not symmetric under exchange of 12



Example: Two identical particles in a 
b i t ti b t ti lbox-no interaction between particles
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This wavefunction is symmetric under exchange 12
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This wavefunction changes sign under exchange, so is the same 
under exchange.
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Pauli Exclusion PrinciplePauli Exclusion Principle
• In a multielectron atom, there can never be more than one 

electron in the same quantum stateelectron in the same quantum state.
• Note that this is satisfied automatically by the 

antisymmetric state:
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• A system containing several electrons must be 
described by an antisymmetric total eigenfunction.
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• Fermions: particles with half integral spinFermions: particles with half integral spin 
(1/2,3/2,…) such as electrons and protons. 
Fermions obey the Pauli exclusion y
principle and have antisymmetric 
wavefunctions.

• Bosons: particles with integral spin (0, 
1,…) such as photons, They need not 
b th P li E l i P i i l dobey the Pauli Exclusion Principle and 

have symmetric wavefunctions.
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Multi-Electron Wave-functions
Independent Particle Approximation

For a system with two electrons:
Total Wave-function = (Spatial Component) X (Spin Component)

Independent electrons:Independent electrons:
Spatial Component = ΨA(1) X ΨB(2) 

•Separation of Variables can be applied to the two-particle Hamiltonian if•Separation of Variables can be applied to the two-particle Hamiltonian if 
electrons are independent

• Also a consequence of the fact that the joint distribution of twoAlso a consequence of the fact that the joint distribution of two 
independent random variables is a product of their individual distributions



Multi-Electron Wave-functions
Independent Particle Approximation

For a system with two electrons:
Total Wave-function = (Spatial Component) X (Spin Component)

Independent electrons:
Spatial Component = ΨA(1) X ΨB(2)Spatial Component = ΨA(1) X ΨB(2) 

• Labels (1) and (2) represent the two electrons

• A and B represent the energy levels they occupy respectively

• This state does not go into ± itself on interchange of 1 and 2 

• Problem: However, electrons are indistinguishable! 

• |Ψ|2 is physically measurable, must not depend on electron labeling 



Multi-Electron Wave-functions
Independent Particle Approximation

Fix: Linear Combinations of Degenerate Solutions
Spatial Component = (1/2)1/2 [ΨA(1) ΨB(2) ± ΨB(1) ΨA(2) ]

• Labels (1) and (2) represent the two electrons

• A and B represent the energy levels they occupy respectively

• This state goes into ± itself on interchange of 1 and 2 

Both physically acceptable one (+) symmetric and the other ( )• Both physically acceptable, one (+) symmetric and the other (-) 
anti-symmetric under exchange



Multi-Electron Wave-functions
Independent Particle Approximation

For a system with two electrons:
Total Wave-function = (Spatial Component) X (Spin Component)

Spin Component
Terminology: |½, -½ >

• Meaning: The first electron is spin-up, the second is spin-down

• Again there is lack of symmetry on exchange of particles 1 and 2• Again there is lack of symmetry on exchange of particles 1 and 2



Multi-Electron Wave-functions
Independent Particle Approximation

Spin Component, Contd.
Problem: Lack of Exchange SymmetryProblem: Lack of Exchange Symmetry

Fix: 
• Spin-symmetric states – Triplet: 

|½ ½ >|½, ½ >
|-½, -½ >
(1/2)1/2 [ |½, -½ > + |-½, ½ > ]

• Spin-anti-symmetric state: (1/2)1/2 [ |½, -½ > - |-½, ½ > ]



Hartree TheoryHartree Theory
• Multielectron atomic theory y
• First consider a nuclear attractive coulombic 

force: +Ze
• Include the coulombic repulsion due to the 

average position of other electrons: -(Z-1)e
A h l t i d d tl f• Assume each electron moves independently of 
each other.

• Schroedinger’s equation becomes separable• Schroedinger s equation becomes separable 
into Z separate equations for the motion of 
each electron:
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What is V(r)?What is V(r)?

• First guess:First guess:
– For r0, 
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• Then, solve SE and calculate V(r)

0
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Hartree SolutionHartree Solution
• Assume V(r) (previous slide)( ) (p )
• Calculate the solutions

),...,,(),,,(),,,( rrr  

with energies

S f
,...,, EEE 

• Put one electron in each state. Soln is the product of 
one electron states.

 ),...,,(),,,(),,,( 333222111 rrr  

• Note:  includes space and spin
 ,0;0;1: lmln
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Hartree Solution (cont)Hartree Solution (cont)
• Use  to calculate V(r)

It t• Iterate:
– Soln SE using new V(r)

Put one electron in each– Put one electron in each 
state to assemble 

– Calculate V(r)Calculate V(r)
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Hartree Fock TheoryHartree Fock Theory

• Hartree theory ignores the requirement ofHartree theory ignores the requirement of 
antisymmetric wave functions.

• Fock included this• Fock included this.
• For a N electron atom, N! terms are added 

i th i f (It i Nin the expression for  (It is an N 
dimensional Slater determinant).

• The effect is only significant for the 
valence electrons.
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 Dependence  Dependence

• The dependence is the same as forThe  dependence is the same as for 
the hydrogen atom since we didn’t assume 
anything for the form of V(r)anything for the form of V(r).
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Solution to SE in Spherical 
C diCoordinates
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Separate  dependenceSeparate  dependence

:Rearrange
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No assumption on the form of V(r)!
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Solution of Solution of 
No assumption on the form of V(r)!
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Separation of r and Separation of r and 
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Solution of Solution of 
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Results of Hartree TheoryResults of Hartree Theory

• Eigenfunctions labeled by n l m ml mEigenfunctions labeled by n,l,m,ml,ms

• (E will not be given by E0/n2)
I t t f lid t t h i• Important for solid state physics.

• Numerical calculation programs exist for 
Hartree and Hartree-Foch
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Labeling of energy levels (shells)Labeling of energy levels (shells)

• N=1 l=0 1s 2 states (up down) H HeN=1,l=0 1s 2 states (up, down) H,He
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Labeling of energy levels (shells)Labeling of energy levels (shells)

• N=1 l=0 1s 2 states (up down) H HeN=1,l=0 1s 2 states (up, down) H,He
• N=2,l=0 2s 2 states (up, down) Li,Mg
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Labeling of energy levels (shells)Labeling of energy levels (shells)

• N=1 l=0 1s 2 states (up down) H HeN=1,l=0 1s 2 states (up, down) H,He
• N=2,l=0 2s 2 states (up, down) Li,Mg

N 2 l 1 2 6 t t (2 ( 1 0 1))• N=2, l=1 2p 6 states (2x(ml=-1,0,1))
B, C, N, O, F, Ne
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Labeling of energy levels (shells)Labeling of energy levels (shells)

• N=1 l=0 1s 2 states (up down) H HeN=1,l=0 1s 2 states (up, down) H,He
• N=2,l=0 2s 2 states (up, down) Li,Mg

N 2 l 1 2 6 t t (2 ( 1 0 1))• N=2, l=1 2p 6 states (2x(ml=-1,0,1))
• N=3, l=0 3s 2 states (2x(ml=0))
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Labeling of energy levels (shells)Labeling of energy levels (shells)

• N=1,l=0 1s 2 states (up, down) H,HeN 1,l 0 1s 2 states (up, down) H,He
• N=2,l=0 2s 2 states (up, down) Li,Mg
• N=2 l=1 2p 6 states (2x(m = 1 0 1))• N=2, l=1 2p 6 states (2x(ml=-1,0,1))
• N=3, l=0 3s 2 states (2x(ml=0))

N 3 l 1 3 6 t t (2 ( 1 0 1))• N=3, l=1 3p 6 states (2x(ml=-1,0,1))
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Order and Labeling of energy 
l l ( h ll )levels (shells)

• N=1 l=0 1s 2 states (up down) H HeN=1,l=0 1s 2 states (up, down) H,He
• N=2,l=0 2s 2 states (up, down) Li,Mg

N 2 l 1 2 6 t t (2 ( 1 0 1))• N=2, l=1 2p 6 states (2x(ml=-1,0,1))
• N=3, l=0 3s 2 states (2x(ml=0))
• N=3, l=1 3p 6 states (2x(ml=-1,0,1))
• N=4 l=0 4s 2 states (2x(ml=0))N 4, l 0 4s 2 states (2x(ml 0))
• N=3, l=2 3d 10 states (2x(ml=-2,-1,0,1,2))

N 4 l 1 4 6 t t (2 ( 1 0 1))
ECE/Mat 162A
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Order and Labeling of energy 
l l ( h ll )levels (shells)

• N=1,l=0 1s 2 states 
• N=2,l=0 2s 2 states 
• N=2, l=1 2p 6 states

N 3 l 0 3 2 t t• N=3, l=0 3s 2 states 
• N=3, l=1 3p 6 states
• N=4, l=0 4s 2 statesN 4, l 0 4s 2 states
• N=3, l=2 3d 10 states
• N=4, l=1 4p 6 states
• N=5, l=0 5s 2 states
• N=5, l=1 5p 6 states
• N=6 l=0 6s 2 states

ECE/Mat 162A
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• N=4, l=3 4f 14 states



ChemistryChemistry

• Inner electrons affected by nucleus, notInner electrons affected by nucleus, not 
other atoms

• Outer electrons see a potential of +e orOuter electrons see a potential of e or 
+2e and are affected by adjacent atoms.

• The outer electrons are called valenceThe outer electrons are called valence 
electrons and are involved in bonding to 
other atoms.

• Atoms with the same valence structure 
behave similarly chemically.
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Periodic Table (Mendeleev in 1869)Periodic Table (Mendeleev in 1869)
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Band Theory of SolidsBand Theory of Solids

• Isolated atom (B)Isolated atom (B)
2s

2p

1s
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Band Theory of SolidsBand Theory of Solids

• Isolated2 atomsIsolated 2 atoms
2s

2p

1s
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Band Theory of SolidsBand Theory of Solids
• Isolated solid

• Splitting higher for 2s

2p

outer electrons; more 
overlap.

• Splitting increases as
1s

• Splitting increases as 
the separation 
decreases.
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Energy BandsEnergy Bands
• Bands that originate from 

l d h ll ( 1 2 fclosed shells (e.g. 1s, 2s for 
boron) have filled bands

• Shells that are partially filled 
result in bands that areresult in bands that are 
partially filled.

• Filled bands give insulators
• Partially filled bands givePartially filled bands give 

metals.
• Filled bands with empty bands 

close by (0.1 to 3 eV) are y ( )
called semiconductors.

• Materials with odd number of 
electrons/atom are always 
metals
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Quantum StatisticsQuantum Statistics
• How are electrons distributed versus energy?gy
• Classical answer: Maxwell Boltzman distribution

kTEAeEP /)( 

• However, this has most electrons at low energies, 
which violates the Pauli exclusion principle.
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Quantum StatisticsQuantum Statistics
• How are electrons distributed versus energy?gy
• Classical answer: Maxwell Boltzman distribution

kTEAeEP /)( 

• Quantum mechanical answer: Fermi Dirac distribution
A
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Boltzmann
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Fermi Dirac
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Electron distribution

)()( EfENdEn 
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ConductionConduction

• A filled band has no net current flow. For everyA filled band has no net current flow.  For every 
electron going in one direction, there is an 
electron going in the opposite direction.

• In general (for electron conduction only), 
EfENdEn  
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