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Solutions to SE

* Free particle

e Step potential
 |nfinite box

e Finite box

e Harmonic oscillator
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Sqguare Well

21,2 2
hz; == hzlr; =Ry, —
For |x|<a/2 .

v (x) = Asin(kx) + B cos(kx) a2 a2
For x<-a/?2

(X)) = Cexp(xx) + D exp(—xx)
Boundary condition: D=0
For x>a/?2

(X)) = F exp(xx) + G exp(—xX)
eBoungary condition: F =0



Solution in Appendix H

e 4 Equations (y and dy/dx at two interfaces)
4 Unknowns (A,B,D,G)
« Solution for :

ctane =+ R2 — &2
where
2, Vg’

E

ma* 2h°
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Harmonic Oscillator

e V(X)=1/2 C x?

* Very common because it represents any
small vibration about a point of stable
equilibrium

 Examples
— Diatomic molecules
— Atoms vibrating on a lattice.

— Particle on a string.



Solution in Appendix |

2 d%y(x C
— +§XZW(X) =Ew(x)

Solution ;

Then Schroedinger's Equation becomes
d
w X*)y =0

Letu—\/7x
p

+( —u?)y =0

d 2



For large u:

—u?/2 u?/2

v = Ae + Be

Finite i means B=0

v~ Ae ™% for u— o

Try to find H(U) that satisfies SE:
w = AH (u)e™ 3



Solutions to Harmonic Oscillator
Substitute in SE to get the Hermite DE .
d’H
du? du o
H(u)=a,+au+a,u’ +...

P2 _1H =0

Calculate the values of a, :
vo=Ae" "

= Aue™"?

= A (1-2u%)e™"?

wheref /o =2n+1 causes the series to stop
Where E =(n+1/2)hv where n=0,1,2,...



Eigenvalues

E =(n+1/2)hv where n=0,1,2,...

And 1 [c
V:
27 \'m

 The series H(u) are called Hermite
polynomials.

. Page 223,224



Harmonic oscillator 13" mode
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Figure 5-18 The eigenfunction for the thirteenth ailowed energy of the simple harmonic
oscillator. The classical limits of motion are indicated by x’ and x".
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Qualitative Plots

Lowest energy solution has no nodes.
Successively higher energy solutions have additional nodes.
Curvature related to E-V

Decay rate related to V-E. n2k? _ E_V
For constant V: 2m
— sinusoid for E>V (k constant) hlK? =V — F

— Exponential decay for E<V (k constant)

Amplitudes larger in smaller curvature regions.
— (Classically, lower P means slower velocity, more likely to find there.)



Symmetry

o If V(X) Is symmetric, then all solutions are
either

— Symmetric (even parity)
— Antisymmetric (odd parity)



Sketch the solutions

How do they differ from infinite square well?




Computer Solutions

French/Taylor page 174. Eisberg/Resnick Appendix G
Convert SE to dimensionless units.

Otherwise, you are dealing with very large quantities
and get numeric overflow and inaccuracies.

A dimensionless form is ,

2m
=y (E-V (W
Where z Is some appropriate natural unit z=x/L
d 2
= (e-v()y

dz?



Solve Numerically

e Divide z into a mesh with steps Az
I—>Z;=]AZ

v(z) > w(z;)=vy,

W(z) >W(z;) =W,



Calculate derivatives using finite

difference
d',V _ Wj+l_'7”j
dz AZ
dzgzﬁ _ (l//j+1_Wj Y, _l//j—l)/AZ
dz AZ Az
d*y _ Win—2W,+¥,,
dz? AZ°

This can be inverted and combined with SE to yield

Win = (2-Az° (e _Wj))Wj —Via



Numerical solutions (cont)

W, Is known.
Pick a value for ¢, Choose wisely.

Start with a value for y; and calculate
across mesh. Choose wisely. (Use
symmetric if possible and ignore
normalization i.e. start with y; =1.

Adjust ¢, and recalculate until an
appropriate solution is found (finite at
Infinity).



