ECE 162A Mat 162A

Lecture #7 Read Chapter 6 of Eisberg, Resnick Chapter 5 of French/Taylor

John Bowers

Bowers@ece.ucsb.edu

Solutions to SE

- Free particle
- Step potential
- Infinite box
- Finite box
- Harmonic oscillator

Square Well

-a/2

a/2

$$\frac{\hbar^{2}k^{2}}{2m} = E \qquad \frac{\hbar^{2}\kappa^{2}}{2m} = V_{0} - E$$

$$For |x| < a/2 \qquad 0$$

$$\psi(x) = A\sin(kx) + B\cos(kx)$$

$$For x < -a/2$$

$$\psi(x) = C\exp(\kappa x) + D\exp(-\kappa x)$$

$$Boundary \ condition: \ D = 0$$

$$For \ x > a/2$$

$$\psi(x) = F\exp(\kappa x) + G\exp(-\kappa x)$$

Example F = 0

Solution in Appendix H

- 4 Equations (ψ and dψ/dx at two interfaces)
- 4 Unknowns (A,B,D,G)
- Solution for:

$$\varepsilon \tan \varepsilon = \sqrt{R^2 - \varepsilon^2}$$
where

$$E = \frac{2\hbar^2 \varepsilon^2}{ma^2} \qquad R^2 = \frac{mV_0 a^2}{2\hbar^2}$$

Harmonic Oscillator

- $V(x)=1/2 C x^2$
- Very common because it represents any small vibration about a point of stable equilibrium
- Examples
 - Diatomic molecules
 - Atoms vibrating on a lattice.
 - Particle on a string.

Solution in Appendix I

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + \frac{C}{2}x^2\psi(x) = E\psi(x)$$

Solution:

Let
$$\alpha = \sqrt{\frac{Cm}{\hbar}}$$
 $\beta = \frac{2mE}{\hbar^2}$

Then Schroedinger's Equation becomes

$$\frac{d^2\psi}{dx^2} + (\beta - \alpha^2 x^2)\psi = 0$$

Let
$$u = \sqrt{\alpha}x$$

$$\frac{d^2\psi}{du^2} + (\frac{\beta}{\alpha} - u^2)\psi = 0$$

For large u:

$$\frac{d^2\psi}{du^2} + (\frac{\beta}{\alpha} - u^2)\psi = 0$$

$$\frac{d^2\psi}{du^2} - u^2\psi \approx 0$$

$$\psi = Ae^{-u^2/2} + Be^{u^2/2}$$

Finite ψ means B = 0

$$\psi \approx Ae^{-u^2/2} \ for \ u \to \infty$$

Try to find H(U) that satisfies SE:

$$\psi = AH(u)e^{-u^2/2}$$

Solutions to Harmonic Oscillator

Substitute in SE to get the Hermite DE:

$$\frac{d^2H}{du^2} - 2u\frac{dH}{du} + (\frac{\beta}{\alpha} - 1)H = 0$$

$$H(u) = a_0 + a_1 u + a_2 u^2 + \dots$$

Calculate the values of a_i :

$$\psi_0 = A_0 e^{-u^2/2}$$

$$\psi_1 = A_1 u e^{-u^2/2}$$

$$\psi_2 = A_2(1-2u^2)e^{-u^2/2}$$

where $\beta/\alpha = 2n+1$ causes the series to stop

Where $E_n=(n+1/2)h\nu$ where n=0,1,2,...

Eigenvalues

E_n=(n+1/2)hv where n=0,1,2,... And $v = \frac{1}{2\pi} \sqrt{\frac{C}{m}}$

• The series H(u) are called Hermite polynomials.

Page 223,224

Harmonic oscillator 13th mode

Figure 5-18 The eigenfunction for the thirteenth allowed energy of the simple harmonic oscillator. The classical limits of motion are indicated by x' and x''.

Qualitative Plots

- Lowest energy solution has no nodes.
- Successively higher energy solutions have additional nodes.
- Curvature related to E-V
- Decay rate related to V-E.

$$\frac{\hbar^2 k^2}{2m} = E - V$$

For constant V:

$$\frac{\hbar^2\kappa^2}{2m} = V - E$$

- Exponential decay for E<V (κ constant)
- Amplitudes larger in smaller curvature regions.
 - (Classically, lower P means slower velocity, more likely to find there.)

Symmetry

- If V(x) is symmetric, then all solutions are either
 - Symmetric (even parity)
 - Antisymmetric (odd parity)

Sketch the solutions

Computer Solutions

- French/Taylor page 174. Eisberg/Resnick Appendix G
- Convert SE to dimensionless units.
- Otherwise, you are dealing with very large quantities and get numeric overflow and inaccuracies.
- A dimensionless form is

$$\frac{d^2\psi}{dx^2} = -\frac{2m}{\hbar^2} (E - V(x))\psi$$

Where z is some appropriate natural unit z=x/L

$$\frac{d^2\psi}{dz^2} = (\varepsilon - v(x))\psi$$

Solve Numerically

• Divide z into a mesh with steps Δz

$$z \to z_{j} = j\Delta z$$

$$\psi(z) \to \psi(z_{j}) = \psi_{j}$$

$$W(z) \to W(z_{j}) = W_{j}$$

Calculate derivatives using finite difference

$$\frac{d\psi}{dz} = \frac{\psi_{j+1} - \psi_{j}}{\Delta z}
\frac{d^{2}\psi}{dz^{2}} = (\frac{\psi_{j+1} - \psi_{j}}{\Delta z} - \frac{\psi_{j} - \psi_{j-1}}{\Delta z}) / \Delta z
\frac{d^{2}\psi}{dz^{2}} = \frac{\psi_{j+1} - 2\psi_{j} + \psi_{j-1}}{\Delta z^{2}}$$

This can be inverted and combined with SE to yield

$$\psi_{j+1} = (2 - \Delta z^2 (\varepsilon - W_j)) \psi_j - \psi_{j-1}$$

Numerical solutions (cont)

- W_i is known.
- Pick a value for ε_n . Choose wisely.
- Start with a value for ψ_j and calculate across mesh. Choose wisely. (Use symmetric if possible and ignore normalization i.e. start with ψ_i =1.
- Adjust ε_n and recalculate until an appropriate solution is found (finite at infinity).