ECE 162A Mat 162A

Lecture \#7

Read Chapter 6 of Eisberg,Resnick Chapter 5 of French/Taylor

John Bowers

Bowers@ece.ucsb.edu

Solutions to SE

- Free particle
- Step potential
- Infinite box
- Finite box
- Harmonic oscillator

Square Well

$\frac{\hbar^{2} k^{2}}{2 m}=E \quad \frac{\hbar^{2} \kappa^{2}}{2 m}=V_{0}-E$
For $|x|<a / 2$
$\psi(x)=A \sin (k x)+B \cos (k x)$

For $x<-a / 2$
$\psi(x)=C \exp (\kappa x)+D \exp (-\kappa x)$
Boundary condition: $D=0$
For $x>a / 2$
$\psi(x)=F \exp (\kappa x)+G \exp (-\kappa x)$
ESodandary condition: $F=0$

Solution in Appendix H

- 4 Equations (ψ and d ψ / dx at two interfaces)
- 4 Unknowns (A,B,D,G)
- Solution for :
$\varepsilon \tan \varepsilon=\sqrt{R^{2}-\varepsilon^{2}}$
where
$E=\frac{2 \hbar^{2} \varepsilon^{2}}{m a^{2}} \quad R^{2}=\frac{m V_{0} a^{2}}{2 \hbar^{2}}$

$\mathrm{E} \longrightarrow$

ECE/Mat 162A

Harmonic Oscillator

- $V(x)=1 / 2 C x^{2}$
- Very common because it represents any small vibration about a point of stable equilibrium
- Examples
- Diatomic molecules
- Atoms vibrating on a lattice.
- Particle on a string.

Solution in Appendix I

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{C}{2} x^{2} \psi(x)=E \psi(x)
$$

Solution:

$$
\text { Let } \alpha=\sqrt{\frac{C m}{\hbar}} \quad \beta=\frac{2 m E}{\hbar^{2}}
$$

Then Schroedinger's Equation becomes

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}+\left(\beta-\alpha^{2} x^{2}\right) \psi=0 \\
& \text { Let } u=\sqrt{\alpha} x \\
& \frac{d^{2} \psi}{d u^{2}}+\left(\frac{\beta}{\alpha}-u^{2}\right) \psi=0
\end{aligned}
$$

For large u:

$$
\begin{aligned}
& \frac{d^{2} \psi}{d u^{2}}+\left(\frac{\beta}{\alpha}-u^{2}\right) \psi=0 \\
& \frac{d^{2} \psi}{d u^{2}}-u^{2} \psi \approx 0 \\
& \psi=A e^{-u^{2} / 2}+B e^{u^{2} / 2}
\end{aligned}
$$

Finite ψ means $B=0$
$\psi \approx A e^{-u^{2} / 2}$ for $u \rightarrow \infty$
Try to find $H(U)$ that satisfies $S E$:
$\psi=A H(u) e^{-u^{2} / 2}$

Solutions to Harmonic Oscillator

Substitute in SE to get the Hermite DE:
$\frac{d^{2} H}{d u^{2}}-2 u \frac{d H}{d u}+\left(\frac{\beta}{\alpha}-1\right) H=0$

$$
H(u)=a_{0}+a_{1} u+a_{2} u^{2}+\ldots
$$

Calculate the values of a_{i} :

$$
\begin{aligned}
& \psi_{0}=A_{0} e^{-u^{2} / 2} \\
& \psi_{1}=A_{1} u e^{-u^{2} / 2} \\
& \psi_{2}=A_{2}\left(1-2 u^{2}\right) e^{-u^{2} / 2} \\
& \text { where } \beta / \alpha=2 n+1 \text { causes the series to stop }
\end{aligned}
$$

Where $E_{n}=(n+1 / 2) h \nu$ where $n=0,1,2, \ldots$

Eigenvalues

$E_{n}=(n+1 / 2) h \nu$ where $n=0,1,2, \ldots$
And

$$
v=\frac{1}{2 \pi} \sqrt{\frac{C}{m}}
$$

- The series $\mathrm{H}(\mathrm{u})$ are called Hermite polynomials.
- Page 223,224

Harmonic oscillator $13^{\text {th }}$ mode

Figure 5-18 The eigenfunction for the thirteenth allowed energy of the simple harmonic oscillator. The classical limits of motion are indicated by x^{\prime} and $x^{\prime \prime}$.

Qualitative Plots

- Lowest energy solution has no nodes.
- Successively higher energy solutions have additional nodes.
- Curvature related to E-V
- Decay rate related to V-E.
- For constant V:
- sinusoid for $E>V$ (k constant)
- Exponential decay for $\mathrm{E}<\mathrm{V}$ (κ constant)

$$
\begin{aligned}
& \frac{\hbar^{2} k^{2}}{2 m}=E-V \\
& \frac{\hbar^{2} \kappa^{2}}{2 m}=V-E
\end{aligned}
$$

- Amplitudes larger in smaller curvature regions.
- (Classically, lower P means slower velocity, more likely to find there.)

Symmetry

- If $V(x)$ is symmetric, then all solutions are either
- Symmetric (even parity)
- Antisymmetric (odd parity)

Sketch the solutions

How do they differ from infinite square well?

Computer Solutions

- French/Taylor page 174. Eisberg/Resnick Appendix G
- Convert SE to dimensionless units.
- Otherwise, you are dealing with very large quantities and get numeric overflow and inaccuracies.
- A dimensionless form is

$$
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m}{\hbar^{2}}(E-V(x)) \psi
$$

- Where z is some appropriate natural unit $z=x / L$

$$
\frac{d^{2} \psi}{d z^{2}}=(\varepsilon-v(x)) \psi
$$

Solve Numerically

- Divide z into a mesh with steps Δz

$$
\begin{aligned}
& z \rightarrow z_{j}=j \Delta z \\
& \psi(z) \rightarrow \psi\left(z_{j}\right)=\psi_{j} \\
& W(z) \rightarrow W\left(z_{j}\right)=W_{j}
\end{aligned}
$$

Calculate derivatives using finite difference

$$
\begin{aligned}
\frac{d \psi}{d z} & =\frac{\psi_{j+1}-\psi_{j}}{\Delta z} \\
\frac{d^{2} \psi}{d z^{2}} & =\left(\frac{\psi_{j+1}-\psi_{j}}{\Delta z}-\frac{\psi_{j}-\psi_{j-1}}{\Delta z}\right) / \Delta z \\
\frac{d^{2} \psi}{d z^{2}} & =\frac{\psi_{j+1}-2 \psi_{j}+\psi_{j-1}}{\Delta z^{2}}
\end{aligned}
$$

This can be inverted and combined with SE to yield

$$
\psi_{j+1}=\left(2-\Delta z^{2}\left(\varepsilon-W_{j}\right)\right) \psi_{j}-\psi_{j-1}
$$

Numerical solutions (cont)

- W_{j} is known.
- Pick a value for $\varepsilon_{\mathrm{n} \text {. }}$ Choose wisely.
- Start with a value for ψ_{j} and calculate across mesh. Choose wisely. (Use symmetric if possible and ignore normalization i.e. start with $\psi_{\mathrm{j}}=1$.
- Adjust ε_{n} and recalculate until an appropriate solution is found (finite at infinity).

