ECE/Mat 162 A, Fall 2008

Assignment 2

Due Tuesday, Oct 14, 2 pm, In Class

- 1. Derive the Bragg Condition for diffraction of electrons in a crystal of inter-atomic spacing 'd'.
- 2. General two slit diffraction/interference experiments do not result in patterns with <u>uniform</u> intensity. Can you explain why?

Hint:

Interference pattern varies as though a diffraction pattern was superimposed on it. Slits have a finite size 'a' and finite distance 'b' between them.

Discuss qualitatively.

<u>Bonus:</u> Can you draw the interference/diffraction pattern for multiple (N) slits.

3. Given

 Δx for atom of size R (not radius) = R/2

Momentum variation $\Delta p = p$ (p – momentum of electron)

Potential function = $-e^2 / 4\pi\epsilon R$

Using the idea that the sum of kinetic and potential energies should be minimum (for a size R)

For the stability of the atom, can you determine the size 'R' in terms of constants for a stable atom?

<u>Bonus:</u> Can you see how the requirement of energy indicates the size of a stable atom. Does this show that uncertainty is the reason for stability of the atom?

4. Explain why ψ and its derivative have to be continuous and finite.