ECE/Mat 162 A, Fall 2008

Assignment 3

Due Tuesday, Oct 21 at 2 pm in Room 2221C ESB

1. Consider a Particle in a Box:

$$V(x) = 0, -L/2 \le x \le L/2$$

= Infinity, elsewhere

- a. Sketch the potential
- b. Write down the boundary condition at \pm L/2 and determine the wave function in different regions.
- c. Use the b.c to show that 'k' is discrete.
- d. Write down the expressions and plot the wave functions for the first three eigen states
- e. Normalize the first eigen function
- f. Show that energy is also quantized and give an expression for it.

Where does this quantization come from as opposed the continuous variation in energy of a free electron?

- g. From the plot of first eigen function, we see that the condition for continuity of ψ' (derivative of ψ) is violated. Can you explain why this violation in acceptable?
- h. Consider

$$V(x) = V_0$$
, $-L \le x \le L$

= Infinity, elsewhere

Determine the allowed values of k, the first three wave-functions and the first three energy eigen values (without redoing steps a-f)

2. AlAs-GaAs-AlAs Hetero junction quantum well

It can be shown that the conduction band-edge of a AlAs-GaAs-AlAs quantum well can be modeled as a potential well of depth 1.05eV, with the only difference of a replacement of the electronic mass m_e with the 'effective mass' of the electron in the conduction band

 $m_{eff} = 0.067 m_e$

a. Looking at the problem as that of a finite-square well, derive the general expression for the wave function an electron of energy 'E' inside the quantum well using boundary conditions. (E < 1.05 eV).

- b. Plot qualitatively the wave function of the first three eigen states.
- c. Assuming a well of width 5 nm, (and assuming you have not been given the well depth, which in this case was 1.05 eV) calculate the **maximum possible** value of the first energy state possible in such a quantum well.

Use the effective mass for all answers.

3. Calculate the phase difference between incident and reflected waves for a step barrier,

- a. E < V
- b. E > V
- c. V = infinity for a finite E

