ECE 162A Mat 162A

Lecture \#5: Schroedinger Theory of Quantum Mechanics

Read Chapter 5,6 of Eisberg,Resnick
John Bowers

Bowers@ece.ucsb.edu

Makeup class: 1 pm Friday, Oct. 17

Schroedinger's Equation (1926)

$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+V(x, t) \psi(x, t)=i \hbar \frac{\partial \psi(x, t)}{\partial t}$

- Kinetic energy + potential energy = total energy

Free particle (V=0)

- Schroedinger's equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}=i \hbar \frac{\partial \psi(x, t)}{\partial t}
$$

- Sin or cosine alone do not work
- Exponential does $\psi(x, t)=A \exp (i(k x-\omega t))$ work:

$$
\begin{aligned}
& \frac{\hbar^{2} k^{2}}{2 m}=\hbar \omega \\
& \frac{\hbar^{2} k^{2}}{2 m}=E
\end{aligned}
$$

Schroedinger's equation is linear

- No terms in ψ^{2} (except in voltage term)
- Hence, if ψ_{1} and ψ_{2} are solutions, then
$\square \psi=\mathrm{a} \psi_{1}+\mathrm{b} \psi_{2}$ is a solution.

Schroedinger's equation is in the nonrelativistic limit.

- Instead of

$$
E=\frac{p^{2}}{2 m}+V
$$

Use (following Dirac) to suggest the form of the equation:

$$
E=\sqrt{c^{2} p^{2}+\left(m_{0} c^{2}\right)^{2}}
$$

Probability

- If, at instant t , a measurement is made to locate the particle associated with the wave function $\psi(x, t)$, then the probability that the particle will be found at a coordinate between x and $\mathrm{x}+\mathrm{dx}$ is

$$
\psi(\mathrm{x}, \mathrm{t}) \psi *(\mathrm{x}, \mathrm{t}) \mathrm{dx}
$$

Where * means complex conjugate.

- It does not tell us that a particle in a given energy state will be found in a precise location at a certain time, but only the relative probabilities that the particle will be found in various locations at that time.
- The prediction is statistical!
- What is the probability function for a free particle?
- Is it real and positive?
- Draw the probability function for the free particle solution.

Quantum Mechanical Problem

Solution

- Solve Schroedinger's equation. Determine eigenfunctions. $\psi_{i}(x, t, \ldots)$. Normalize eigenfunctions.
- Apply boundary conditions and determine solutions (eigenvalues). E_{i}
- The complete solution is

$$
\psi(x, t)=\sum A_{i} \psi_{i}(x, t)
$$

- Apply initial condition to determine the coefficients. A_{i}
- The instantaneous state of the system is exactly known for all time, but particle positions are only determined by measurement and the average of many measurements is given by

$$
|\psi(\mathrm{x}, \mathrm{t})|^{2}
$$

The probability is real and positive:

$$
\begin{aligned}
& |\psi(\mathrm{x}, \mathrm{t})|^{2}=\psi(\mathrm{x}, \mathrm{t}) \psi^{*}(\mathrm{x}, \mathrm{t}) \\
& \psi(\mathrm{x}, \mathrm{t})=\mathrm{R}(\mathrm{x}, \mathrm{t})+\mathrm{iI}(\mathrm{x}, \mathrm{t}) \text { where } \mathrm{R} \text { and I are real } \\
& \text { so } \\
& |\psi(\mathrm{x}, \mathrm{t})|^{2}=(R+i I)(R-i I)=R^{2}+I^{2} \geq 0
\end{aligned}
$$

Normalize eigenfunctions
 $$
\int_{-\infty}^{\infty} P d x=1
$$

$$
\int_{-\infty}^{\infty} \Psi * \Psi d x=1
$$

$$
\Psi=\sum_{i} A_{i} \psi_{i}
$$

Normalize

$$
\int_{-\infty}^{\infty} \psi_{i} * \psi_{i} d x=1
$$

The solutions are orthogonal

$$
\int_{-\infty}^{\infty} \psi_{i}{ }^{*} \psi_{j} d x=0 \quad \text { if } i \neq j
$$

If the wavefunctions are normalized

$$
\int_{-\infty}^{\infty} \psi_{i}{ }^{*} \psi_{j} d x=\delta_{i j}
$$

Orthonormal
eigenfunctions
where

$$
\delta_{i j}=1 \text { if } i=j
$$

$$
0 \text { if } i \neq j
$$

Expectation Values

- We may not know the position without making a measurement, but we can calculation the average value for the position (the expectation value).

$$
\begin{aligned}
& \langle x\rangle=\bar{x}=\int_{-\infty}^{\infty} x P(x, t) d x \\
& \bar{x}=\int_{-\infty}^{\infty} \Psi^{*}(x, t) x \Psi d x
\end{aligned}
$$

- This is true for any variable (energy, momentum, ...)
- The order doesn't matter here, but will later when we calculate the expectation value of operators.

Operators

- Use operators to represent mathematical operations. For example:
- Momentum

$$
\begin{aligned}
& \hat{p} \leftrightarrow-i \hbar \frac{\partial}{\partial x} \\
& \hat{E} \leftrightarrow i \hbar \frac{\partial}{\partial t}
\end{aligned}
$$

- Energy
- Note that

$$
\hat{p}^{2} \leftrightarrow-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}
$$

- So Schroedinger's equation becomes in operator form

$$
\frac{\hat{p}^{2}}{2 m}+V=\hat{E} \quad \frac{\hat{p}^{2}}{2 m} \Psi+V \Psi=\hat{E} \Psi
$$

Momentum Expectation Value

$$
\bar{p}=\int \Psi * \hat{p} \Psi d x
$$

The expectation value for the dynamic quantity $f(x, p, t) i$

$$
\overline{\mathrm{f}(\mathrm{x}, \mathrm{p}, \mathrm{t})}=\int_{-\infty}^{\infty} d x \Psi^{*} \hat{f}\left(x,-i \hbar \frac{\partial}{\partial x}, t\right) \Psi
$$

Note: The wave function contains
information not just on the probability density versus time, but also the momentum, energy, or $f(x, p, t)$

Solve Time Dependent Schroedinger Equation when $\mathrm{V}(\mathrm{x})$ is a function of x only

Derive the time Independent Schroedinger Equation

Solve Time Dependent Schroedinger

 Equation when $\mathrm{V}(\mathrm{x})$ is a function of x onlyTry separation of variables

$$
\begin{aligned}
& \Psi(x, t)=\psi(x) \varphi(t) \\
& -\frac{\hbar^{2} \varphi(t)}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x) \phi(t)=-i \hbar \psi(x) \frac{d \phi(t)}{d t} \\
& -\frac{\hbar^{2}}{2 m \psi} \frac{d^{2} \psi(x)}{d x^{2}}+V(x)=\frac{-i \hbar}{\varphi(t)} \frac{d \phi(t)}{d t}
\end{aligned}
$$

LHS is a function of x only and RHS is a function of t only, so both sides must equal a constant.

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m \psi} \frac{d^{2} \psi(x)}{d x^{2}}+V(x)=\frac{-i \hbar}{\varphi(t)} \frac{d \phi(t)}{d t}=E \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)
\end{aligned}
$$

Time Independent Schroedinger Equation

Time Independent Schroedinger Equation

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \\
\Psi(x, t)=\psi(x) e^{-i E t / \hbar}
\end{gathered}
$$

Requirements on Solution

$\square \psi(\mathrm{x}), \mathrm{d} \psi(\mathrm{x}) / \mathrm{dx}$ must be finite. (or at least the integral of $\psi^{*} \psi$ must be finite).
$\square \psi(\mathrm{x}), \mathrm{d} \psi(\mathrm{x}) / \mathrm{dx}$ must be single valued.
$\square \psi(\mathrm{x}), \mathrm{d} \psi(\mathrm{x}) / \mathrm{dx}$ must be continuous.

- Note: If $\mathrm{V}(\mathrm{x})$ is not continuous, then $\mathrm{d}^{2} \psi(\mathrm{x}) / \mathrm{dx}^{2}$ is not continuous.

Qualitative Plots

- Lowest energy solution has no nodes.
- Successively higher energy solutions have additional nodes.
- Curvature related to E-V
- Decay rate related to V-E.
- For constant V:
- sinusoid for E>V (k constant)
- Exponential decay for $\mathrm{E}<\mathrm{V}$ (к constant)

$$
\begin{aligned}
& \frac{\hbar^{2} k^{2}}{2 m}=E-V \\
& \frac{\hbar^{2} \kappa^{2}}{2 m}=V-E
\end{aligned}
$$

- Amplitudes larger in smaller curvature regions.
- (Classically, lower P means slower velocity, more likely to find there.)

Symmetry

- If $V(x)$ is symmetric, then all solutions are either
- Symmetric (even parity)
- Antisymmetric (odd parity)

Sketch the solutions

How do they differ from infinite square well?

Eigenvalue Equation

- Using operators, Schroedinger's equation can be expressed as an eigenvalue equation
where

$$
\begin{aligned}
E_{o p} \psi & =E \psi \\
E_{o p} & =-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V
\end{aligned}
$$

- The solution of the equation involves finding the particular solutions ψ_{n} called eigenfunctions and E_{n} called eigenvalues.

Solutions to SE

- Free particle
- Step potential
- Infinite box
- Finite box
- Harmonic oscillator

Free particle ($\mathrm{V}=0$)

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}=E \psi(x)
$$

$$
\text { Solution : } \quad \psi(x)=\exp (i k x)
$$

$$
\text { where } \frac{\hbar^{2} k^{2}}{2 m}=E
$$

The complete solution is

$$
\Psi(x, t)=\psi(x) e^{-i E t / \hbar}=e^{i k z-i(E / \hbar) t}
$$

There are no constraints on E, any value is allowed at this point. This corresponds to a wave moving to the right. -k solutions are also valid.

