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Lecture #5: Schroedinger Theory of 
Q ant m MechanicsQuantum Mechanics

Read Chapter 5,6 of Eisberg,Resnick

John Bowers
Bowers@ece.ucsb.edu

Makeup class: 1 pm Friday, Oct. 17Makeup class: 1 pm Friday, Oct. 17



Schroedinger’s Equation (1926)Schroedinger s Equation (1926)
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– Kinetic energy + potential energy = total energy
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Free particle (V=0)Free particle (V 0)

• Schroedinger’sSchroedinger s 
equation:
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• Sin or cosine alone
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Sin or cosine alone 
do not work

• Exponential does ))(exp(),( tkxiAtx &% $"po e t a does
work:
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Schroedinger’s equation is linearSchroedinger s equation is linear

• No terms in %2 (except in voltage term)No terms in % (except in voltage term)
• Hence, if %'(and%)(are solutions, then

b i l i� %=a%'+b%)(is a solution.



Schroedinger’s equation is in the 
l i i i li inonrelativistic limit.

• Instead ofInstead of 
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Use (following Dirac) to suggest the form of the equation:
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ProbabilityProbability
• If, at instant t, a measurement is made to locate the particle 

associated with the wave function  %(x,t), then the probability that 
the particle will be found at a coordinate between x and x+dx is

%(x,t) %*(x,t)dx

Where * means complex conjugateWhere  means complex conjugate.

• It does not tell us that a particle in a given energy state will be found 
in a precise location at a certain time but only the relativein a precise location at a certain time, but only the relative 
probabilities that the particle will be found in various locations at that 
time.  

• The prediction is statistical!• The prediction is statistical!



• What is the probability function for a freeWhat is the probability function for a free 
particle?  

• Is it real and positive?• Is it real and positive?
• Draw the probability function for the free 

ti l l tiparticle solution.



Quantum Mechanical Problem 
S l iSolution

• Solve Schroedinger’s equation. Determine eigenfunctions. g q g
%i(x,t,…). Normalize eigenfunctions.

• Apply boundary conditions and determine solutions 
( i l ) E(eigenvalues). Ei

• The complete solution is
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• Apply initial condition to determine the coefficients. Ai
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• The instantaneous state of the system is exactly known for 
all time, but particle positions are only determined by 
measurement and the average of many measurements ismeasurement and the average of many measurements is 
given by 2t)(x,%



The probability is real and positive:The probability is real and positive:
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Normalize eigenfunctionsNormalize eigenfunctions
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The solutions are orthogonalThe solutions are orthogonal
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Expectation ValuesExpectation Values

• We may not know the position without making aWe may not know the position without making a 
measurement, but we can calculation the average 
value for the position (the expectation value).  
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• This is true for any variable (energy, momentum, …)
• The order doesn’t matter here but will later when we

.$

The order doesn t matter here, but will later when we 
calculate the expectation value of operators.



OperatorsOperators
• Use operators to represent mathematical operations.  For 

example:
!

• Momentum
Energy
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• So Schroedinger’s equation becomes in operator form
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Momentum Expectation ValueMomentum Expectation Value
dxpp //" - ˆ* dxpp -

The expectation value for the dynamic quantity f(x p t) isThe expectation value for the dynamic quantity f(x,p,t) is
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Note: The wave function containsNote: The wave function contains 
information not just on the probability 
density versus time, but also the 
momentum, energy, or f(x,p,t)



Solve Time Dependent Schroedinger 
E ti h V( ) i f ti f lEquation when V(x) is a function of x only

Derive the time Independent Schroedinger Equation



Solve Time Dependent Schroedinger 
E ti h V( ) i f ti f lEquation when V(x) is a function of x only
Try separation of variables
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LHS is a function of x only and RHS is a
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LHS is a function of x only and RHS is a 
function of t only, so both sides must equal a 
constant.
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Time Independent Schroedinger Equation



Time Independent Schroedinger 
E iEquation
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Requirements on SolutionRequirements on Solution

� %5x6 (d%5x6/dx must be finite (or at least the� %5x67(d%5x6/dx must be finite. (or at least the 
integral of %*% must be finite).

� %5x6 (d%5x6/dx must be single valued� %5x67(d%5x6/dx must be single valued.
� %5x67(d%5x6/dx must be continuous.
• Note: If V(x) is not continuous, then d2%5x6/dx2

is not continuous.



Qualitative PlotsQualitative Plots
• Lowest energy solution has no nodes.gy
• Successively higher energy solutions have additional nodes.
• Curvature related to E-V
• Decay rate related to V-E.
• For constant V: 
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– sinusoid for E>V (k constant)
– Exponential decay for E<V (8 constant)

• Amplitudes larger in smaller curvature regions.
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– (Classically, lower P means slower velocity, more likely to find there.)



SymmetrySymmetry

• If V(x) is symmetric then all solutions areIf V(x) is symmetric, then all solutions are 
either 

Symmetric (even parity)– Symmetric (even parity)
– Antisymmetric (odd parity)



Sketch the solutionsSketch the solutions
How do they differ from infinite square well?



Eigenvalue EquationEigenvalue Equation
• Using operators, Schroedinger’s equation can g p , g q

be expressed as an eigenvalue equation
%% EEop "
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• The solution of the equation involves finding 
the particular solutions %n, called 
eigenfunctions and E called eigenvalues

dxm

eigenfunctions and En called eigenvalues.



Solutions to SESolutions to SE

• Free particleFree particle
• Step potential

I fi it b• Infinite box
• Finite box
• Harmonic oscillator



Free particle (V=0)
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The complete solution is
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There are no constraints on E, any value is allowed at this point.
This corresponds to a wave moving to the right.  -k solutions are 
also valid.


