162A Homework 4

Due Oct 28, 2 pm. No late papers accepted. Solutions given in class.

1. Consider an electron in an infinite potential well of width L. At time y = 0, the state is described by

 $\Psi(x,0) = A (\psi_1(x) + \psi_2(x))$

Where ψ_1 and ψ_2 are the first two eigenstates of the well and A is the normalization coefficient.

- **a.** Normalize $\Psi(x)$. (Make use of the shape of ψ_1 and ψ_2 to simplify the calculations)
- **b.** Draw a sketch of $\Psi(x)$ at t=0⁺
- c. Write an expression of the subsequent time evolution of the system $\Psi(x,t)$ in terms of energies E_1 and E_2 of ψ_1 and ψ_2
- **d.** What is the time period (T) of the oscillations ?
- e. Plot Ψ at t= 0 and at half the time period, t=T/2.
- **f.** What is the expectation value of momentum ()? Think...
- 2. Consider an infinite potential extending from -L/2 to +L/2. with a barrier of height V₀ inside the well extending from -a/2 to +a/2 (of course a < L)
 - **a.** Sketch the wave function for the case (E energy of particle in the well)
 - i. $E > V_0$ ii. $E = V_0$
 - **b.** Determine the minimum barrier height V_0 such that the first eigen state has energy less than that of the barrier height V_0

3. A rectangular potential well in one dimension is bounded by a wall of height $5V_0$ (at x=0) on one side and a wall of height $2V_0$ (at x=L) on the other.

Suppose the second energy state for a particle of a mass m has energy $E_2 = V_0$

- **a.** Plot ψ_2
- **b.** Does the node of this wave function occur to the left or the right of the centre of the well (i.e to the right of L/2 or to the left).. and why ?
- 4. Consider a infinite potential extending from 0 to L

Write down the general solution for the state m, i.e Ψ_{m} . For $m \neq n$ prove that

 $\int \Psi_{n}(x)^{*}\Psi_{m}(x) dx = 0.$

Note that this not true for m=n. This is a very important property of the solutions of the S.W.E –that they are **mutually orthogonal**