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3 Dimensional Time Independent
Schroedinger Equation

hZ 82 82 82
— + + X, v, 2)+V(x,y,zW(x, v,z
2m(8x2 0y azz)tﬂ( ¥,2)+V(x,y, 2 (x,y,2)

=Ey(x,y,2)

2

—h—V2¢ +Vy = Ey
2m

If V(X,y,Z) = V(I/')

Switch coordinate systems
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Solution to SE in Spherical
Coordinates

2

—h—Vzv,u +Vy = Ey
2m

1 Zé

]f V(F,H,¢)=V(V)=—4ﬂ:8 .

Then try separation of variables

Y (r,0,¢) = R(r)O(0)D(¢)
Substitute and divide by ROD

~ h? (1 d(rzﬁ))_i_ 1 d
2mR r* dr dr Or’sinb do

1 do
dr’sin® 0 d’¢

(sinf Z—(Z) + +V(r)=E
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Solution of &

ldo
D d’¢ |
D =A™’

Single valued means

D(¢) = D(¢ +2m)
Which means mu is an Integer.
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Solution of ®

moe 1 do

sm@— [([+1)O
sin®@  sin® dH( )=1U+D)

The solution is in Appendix N.
Use a power series expansion in cos 6.
The series terminates for

O =sin"0F, (cosB)

lml

ECE/MAT 162A, Blumenthal, Fall
2009



Solution of R
2mr?

d ,dR .
= (E=VODR+( (2~ ) =1+ DR

E
The solution is in Appendix N. "
Use a power series expansion in r. where
: . Z2 4
The series terminates for E, = m 26 _—13.6eV
(4me,) 20
n=[+1,/+2,...
(£=1)
R, (r) =" (ZL) G (21 ay)
dy
2
G(x) is a polynomial in x a, = 4”80? =.5254
me
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Quantum numbers

*N,I,m, are called quantum numbers

*The energy eigenvalue depends only on n, so
N is called the principle quantum number.

*The angular momentum depends on |, so
| is called the azimuthal quantum number.

*The energy in a magnetic field depends on m, so
m, is called the magnetic quantum number.

E
E -0
n
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Examination of the solution

The solution of the spherical potential has
solutions for particular quantum numbers m,l,n,E
where m|=0,1,2,...

[ = ‘m, Jm |+ 1.
n=I[+1,1+2,...
*This is equivalent to
n=1223,...
[=01,2,.n-1

m, =—l,~1+1,..0..0 -1,
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Degeneracy of the solution

n=123,...
[=0]12,..n-1
m, =-1,-[+1,..0../ -1,/

* For each value of n,
— There are n possible values of |

* For each value of |
— There are 2|+1 values of m,

« For each value of n,
— There are n? degenerate eigenfunctions.
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Quantum numbers

*N,I,m, are called quantum numbers
*The energy eigenvalue depends only on n, so
N is called the principle qguantum number.

*The angular momentum depends on |, so
| is called the azimuthal qguantum number.

*The energy in a magnetic field depends on m, so
m, is called the magnetic quantum number.

E
E =-2¢
N
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The first convincing verification of Schrodinger’s theory was this calculations of
eigenvalues, in agreement with experiment, just as Bohr’s model.
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Fine structure splitting

How to explain with Bohr

When the spectral lines of the hydrogen theory?

spectrum are examined at very high Sommerfeld’'s model:
resolution, they are f_ound_t(? be_ closely- | Attempt to explain using
spaced doublets. This splitting is called fine elliptical orbits. . Treat
structure (and was one of the first relativistically.

experimental evidences for electron spin).
However, dashed lines don’t
How to explain with Schrodinger’s theory? appear experimentally. Why?

(SOOn- . E n = 4 Selection rules....

1n=3,n9=3
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Figure 4-19 The fine-structure splitting of some energy levels of the hydrogen atom. The
splitting is greatly exaggerated. Transitions which produce observed lines of the hydrogen
spectrum are indicated by solid arrows.
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Comparison of Solutions

+ oo +co

ey gt 4

Finite Simple harmonic
square well oscillator Coulomb

Figure 7-4 A comparison between the allowed energies of several binding potentials. The

three-dimensional Coulomb potential is shown in a cross-sectional view along a diameter:
the other potentials are one-dimensional.

—O0 = 0O

E.=(n+1/2hv E, =-—

n 2

v
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Actual hydrogen atom

* 6 spatial coordinates:

_ Xe’ye’ze
— X0 ¥p:Zp

— What to do? \
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Actual hydrogen atom

» 0 spatial coordinates:

_ Xe’ye’ze
— Xp:¥Yp:dp

 Switch to center of mass m \
coordinates

 The electron moves
about a stationary, infinite
mass nucleus. The
problem reduces to 3
spatial coordinates

— XrerYrerre
— With reduced mass u M % \
m

M=M+m
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3 spatial variables, 3 quantum numbers
m=9.110""kg

M =167210""kg
A small, but measurable

u=9.0510""%kg correction

E
E =-—"0
n I’l2

where

72,
Ly = . 26 2
(4me,) 2n

drre h’
ay=—2
ue
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Lowest energy solution

n=1
1=0
m=0
E=-13.6 eV
There is only one solution (no degeneracy)
| AN ~Zrla,
Y100 \/; (ao )" e

The solution is spherically symmetric.
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