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Quantum numbers

*N,I,m, are called quantum numbers
*The energy eigenvalue depends only on n, so
N is called the principle qguantum number.

*The angular momentum depends on |, so
| is called the azimuthal qguantum number.

*The energy in a magnetic field depends on m, so
m, is called the magnetic quantum number.
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The first convincing verification of Schrodinger’s theory was this calculations of
eigenvalues, in agreement with experiment, just as Bohr’s model.
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Fine structure splitting

When the spectral lines of the hydrogen
spectrum are examined at very high
resolution, they are found to be closely-

spaced doublets. This splitting is called fine

structure (and was one of the first

experimental evidences for electron spin).

How to explain with Schrodinger’s theory?

(Soon..

)

How to explain with Bohr
theory?

Sommerfeld’s model:
Attempt to explain using
elliptical orbits. . Treat
relativistically.
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Figure 4-19 The fine-structure splitting of some energy levels of the hydrogen atom. The
splitting is greatly exaggerated. Transitions which produce observed lines of the hydrogen

spectrum are indicated by solid arrows.



Comparison of Solutions
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Figure 7-4 A comparison between the allowed energies of several binding potentials. The

three-dimensional Coulomb potential is shown in a cross-sectional view along a diameter:
the other potentials are one-dimensional.
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Examination of the solution

* The solution of the spherical potential has
solutions for particular quantum numbers m,l,n,E

where
m|=0,12,...

9

n=I[+1,[+2,...

Z=Pm nﬂ+&,”
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Examination of the solution

The solution of the spherical potential has
solutions for particular quantum numbers m,l,n,E

where m,|=0,12,...
[ = ‘m, Jm |+ 1,
n=[1+1,1+2,...
*This is equivalent to
n=1223,..
[=0,12,.n-1
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Degeneracy of the solution

n=123,...
[=0]12,..n-1
m, =-1,-[+1,..0../ -1,/

* For each value of n,
— There are n possible values of |

 For each value of |
— There are 2I1+1 values of m

 For each value of n,

— There are n? degenerate eigenfunctions.
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Actual hydrogen atom

* 6 spatial coordinates:

_ Xe’ye’ze
— X0 ¥p:Zp

— What to do? \
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Actual hydrogen atom

» 0 spatial coordinates:

_ Xe’ye’ze
— Xp:¥Yp:dp

 Switch to center of mass m \
coordinates

 The electron moves
about a stationary, infinite
mass nucleus. The
problem reduces to 3
spatial coordinates

— Xre7yre’zre
— With reduced mass u /\4 w \
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3 spatial variables, 3 quantum

numbers
m=9.110""kg
M =1672107"kg
A small, but measurable
u=9.0510""%kg correction
E
E,--—2
where
2 4
E =M _136e
(477580) 2h
drre h’
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Lowest energy solution

n=1
1=0
m=0
E=-13.6 eV
There is only one solution (no degeneracy)
| AN ~Zrla,
Y100 \/; (ao )" e

The solution is spherically symmetric.
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Lowest energy solution

n=1
1=0
m=0
E=-13.6 eV
There is only one solution (no degeneracy)
| AN ~Zrla,
Y100 \/; (ao )" e

The solution is spherically symmetric.
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Second lowest energy solutions

n=2

E=-13.6/4=-3.4 eV

There are four degenerate solutions
One solution is spherically symmetric.

1 Z 3/2 Zr. _zu2a
= 2——)e 0
Y00 | /—2 ( o) ( 0)

One solution is cylindrically symmetric

1 Z 32 LV, _71%4
= —)e " cosf
Y110 4@(%) (ao)

Two solutions are degenerate

1 Z Z : .
Yo = = )2 (E)e 2 sing e
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Energy

Radial Dependence

Figure 7-6 The qualitative behavior of the kinetic €
energy E of a‘hydrogen atom, as functions of the size |
more rapidly than V decreases because K oc 1/F
becomes negligible compared to V. As a result, E h
(indicated by the mark on the R axis), and at this si
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Figure 7-5 The radial probability density for the electron in a one-electron atom for n =
1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of
r,; as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales
expanded by a factor of 10 to show the behavior of P, (r) near the origin. Note that in the
three cases for which | =/, =n — 1 the maximum of P,(r) occurs at ry,,. = n*ay/Z,
which is indicated by the location of the dashed line.
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Radial Dependence

Table 7-2 Some Eigenfunctions for the One-Electron Atom

Quantum Numbers
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Figure 7-5 The radial probability density for the electron in a one-electron atom for n =
1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of
T, as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales
expanded by a factor of 10 to show the behavior of P,(r) near the origin. Note that in the
three cases for which | =/, =n — 1 the maximum of P,(r) occurs at ry,.. = n’ay/Z,
which is indicated by the location of the dashed line.
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Polar Dependence
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Figure 7-9 Polar diagrams of the directional dependence of the one-electron probability
densities for | =
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n=21l=m=0

n=2,l=I1,ml=0

n=31=1,m=0 ) l

n=3,l=2,ml=0
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Classical Angular Momentum

—_ =S —

L=rxp

L,=yp, -zp,
L, =zp, —Xxp,
L, =zp -xp,
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Angular momentum
(Cartesian coordinates)

Classical Quantum Mechanical
L=rxp L=rxp
L, =yp.-zp, L, =-in(y2 =22
0z oy
L, =zp, —xp. \ 3 3
L, = —if(z— - x—)
Lz=xpy_ypx 0x 0Z
L = —ih(xi —yi)
dy 0x
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Angular Momentum in Spherical
Coordinates

L=rxp
i = —fhrx%
! s 0 0
L_=—-ih(sind —+cotf cosp—)
00 J¢
! . d .0
L =-ih(-cos@—+cotOsmngp—)
g 00 J¢
= =i
09
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What is the z component of angular momentum?

« Calculate the ey d@zﬂd .
expectation value f ”f [ oy Ly
w = Rnl (r)®zm eiml(p
i =—ﬂ%——
J¢
] . O inyp i
Ly =-ih—e™" =hme™

09
2m

Zz =fRnl >X<(l/')lenl (l’)]’zdl" ®lm, *®lm1d6fd¢ hml
0 0

0

L, =hm,
So, the z component of angular momentum has the average value given above.
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What is the total (squared) angular momentum?

e Calculate the
expectation value

00 T 2r

T2 2 * 2
L =[r a’r{d@{dqblp Ly
Y = an(’”)@zmleimﬂ)

,1 0 (sinﬁi)+ : 12 822
sinf 060 00 smm"0 d°¢
Iy =11+ DRy
L =I(l + DR’

P =-h%(

)
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Vector picture of angular momentum

I N

The arrow has length \/2(2 +1)
While the vertical component has length 2,1,0,-1,-2

The average value of LxLy is zero.

The energy of the atom does not depend on m, (i.e. orientation

of ang. I\/Iomentum). ECE/MAT 12%,8,98Iumenthal,



Quantization

* We showed that the average value of L, is mh.
That doesn’t mean that L, is quantized.

« However, since

. o . |
Ly = —jih—e™? = hmle’m’¢
J¢

L, =hm,

izw —_p2 2 9’ o™ — B2m 2 oMo
: p ¢
L’ =h’m}
« The average of a set can only equal the
average of the square of the set if all values
are equal. Hence, L, Iis quantized.
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* |In general, if the quantity f has the value F in the
quantum state described by vy, then

fy = Fy

. Wherejf is the operator corresponding to f.
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 Note:
Ly =1y
Lyy =1y

* SoL, and L, are not quantized.
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* Under what conditions can two or more
observable properties of a quantum
system have unique eigenvalues for a
given quantum state?
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* If two operators commute, then the
eigenvalues associated with those
operators are simultaneous eigenvalues.

* |f two operators do not commute, then the
eigenvalues associated with those two
operators typically exhibit an uncertainty
relation.
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* If two operators do not commute, then the
eigenvalues associated with those two
operators typically exhibit an uncertainty
relation.

* Exception:

« Sometimes the values are zero. For

example for zero total angular momentum,
Lx=Ly=Lz=0
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