ECE 162A Mat 162A

Lecture \#12:Angular momentum E/R: Chapter 7 F/T Chapter 10

ECE/Mat 162A, Blumenthal, Fall

Angular momentum

 Classcial (Cartesian coordinates)$$
\begin{array}{ll}
\vec{L}=\vec{r} \times \vec{p} & \hat{L}=\vec{r} \times \hat{p} \\
L_{x}=y p_{z}-z p_{y} & \hat{L_{x}}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
L_{y}=z p_{x}-x p_{z} & \hat{L_{y}}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \\
L_{z}=x p_{y}-y p_{x} & \hat{L_{z}}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
\end{array}
$$

Angular Momentum in Spherical Coordinates

$$
\begin{aligned}
& \hat{L}=\vec{r} \times \hat{p} \\
& \hat{L}_{x}=-i \hbar\left(\sin \theta \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right) \\
& \hat{L}_{y}=-i \hbar\left(-\cos \theta \frac{\partial}{\partial \theta}+\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right) \\
& \hat{L}_{z}=-i \hbar\left(\frac{\partial}{\partial \phi}\right)
\end{aligned}
$$

What is the z component of angular momentum?

- Calculate the expectation value

$$
\begin{aligned}
& \bar{L}_{z}=\int_{0}^{\infty} r^{2} d r \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \psi^{*} \hat{L}_{z} \psi \\
& \psi=R_{n l}(r) \Theta_{l m_{l}}^{i m_{l} \phi} \\
& \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
& \hat{L}_{z} \psi=-i \hbar \frac{\partial}{\partial \phi} e^{i m_{l} \phi}=\hbar m_{l} e^{i m_{l} \phi} \\
& \bar{L}_{z}=\int_{0}^{\infty} R_{n l} *(r) R_{n l}(r) r^{2} d r \int_{0}^{\pi} \Theta_{l m_{l}} * \Theta_{l m_{l}} d \theta \int_{0}^{2 \pi} d \phi \hbar m_{l} \\
& \bar{L}_{z}=\hbar m_{l}
\end{aligned}
$$

So, the z component of angular momentum has the average value given above.

What is the total (squared) angular momentum?

- Calculate the
expectation value

$$
\begin{aligned}
& \bar{L}^{2}=\int_{0}^{\infty} r^{2} d r \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \psi^{*} \hat{L}^{2} \psi \\
& \psi=R_{n l}(r) \Theta_{l m_{l}} e^{i m, \phi} \\
& \hat{L}^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi}\right) \\
& \hat{L}^{2} \psi=l(l+1) \hbar^{2} \psi \\
& \bar{L}^{2}=l(l+1) \hbar^{2}
\end{aligned}
$$

Vector picture of angular momentum

The arrow has length $\sqrt{2(2+1)}$
While the vertical component has length $2,1,0,-1,-2$
The average value of LxLy is zero.
The energy of the atom does not depend on m (i.e. orientation of ang. Momentum). . ${ }^{\text {ECE/Mat 162A, Blumenthal, Fall }}$

Quantization

- We showed that the average value of L_{z} is $m h$. That doesn't mean that L_{z} is quantized.
- However, since

$$
\begin{aligned}
& \hat{L}_{z} \psi=-i \hbar \frac{\partial}{\partial \phi} e^{i m_{l} \phi}=\hbar m_{l} e^{i m_{l} \phi} \\
& \bar{L}_{z}=\hbar m_{l} \\
& \hat{L}_{z}^{2} \psi=-\hbar^{2} \frac{\partial^{2}}{\partial^{2} \phi} e^{i m_{l} \phi}=\hbar^{2} m_{l}^{2} e^{i m_{l} \phi} \\
& \bar{L}_{z}^{2}=\hbar^{2} m_{l}^{2}
\end{aligned}
$$

- The average of a set can only equal the average of the square of the set if all values are equal. Henceennads, sumantized.
- In general, if the quantity f has the value F in the quantum state described by ψ, then

$$
\hat{f} \psi=F \psi
$$

- Where \hat{f} is the operator corresponding to f .
- Note:

$$
\begin{aligned}
& \hat{L}_{x} \psi \neq l_{x} \psi \\
& \hat{L} y \psi \neq l_{y} \psi
\end{aligned}
$$

- So L_{x} and L_{y} are not quantized.

$\left[L_{x}, L_{y}\right]=i \hbar L_{z}$
 $$
\left[L_{y}, L_{z}\right]=i \hbar L_{x}
$$
 $$
\left[L_{z}, L_{x}\right]=i \hbar L_{y}
$$

- Under what conditions can two or more observable properties of a quantum system have unique eigenvalues for a given quantum state?
- If two operators commute, then the eigenvalues associated with those operators are simultaneous eigenvalues
- If two operators do not commute, then the eigenvalues associated with those two operators typically exhibit an uncertainty relation.
- Exception:
- Sometimes the values are zero. For example for zero total angular momentum, $L^{2}=0 . L_{x}=L_{y}=L_{z}=0$
- In general, for every system one may identify at least one complete set of commuting observables.

Specific Case: 2D Harmonic Oscillator

$$
\begin{aligned}
& V(x, y)=\frac{1}{2} C\left(x^{2}+y^{2}\right) \equiv \frac{1}{2} M \omega^{2}\left(x^{2}+y^{2}\right) \\
& \frac{-\hbar^{2}}{2 M}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}\right)+\frac{1}{2} M \omega^{2}\left(x^{2}+y^{2}\right) \psi=E \psi
\end{aligned}
$$

Specific Case: 2D Harmonic Oscillator

$$
\begin{aligned}
& V(x, y)=\frac{1}{2} C\left(x^{2}+y^{2}\right) \equiv \frac{1}{2} M \omega^{2}\left(x^{2}+y^{2}\right) \\
& \frac{-\hbar^{2}}{2 M}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}\right)+\frac{1}{2} M \omega^{2}\left(x^{2}+y^{2}\right) \psi=E \psi \\
& \psi(x, y)=f(x) g(y) \\
& \frac{-\hbar^{2}}{2 M}\left(g \frac{\partial^{2} f}{\partial x^{2}}+f \frac{\partial^{2} g}{\partial y^{2}}\right)+\frac{1}{2} M \omega^{2}\left(x^{2}+y^{2}\right) f g=E f g \\
& \left(\frac{-\hbar^{2}}{2 M f} \frac{\partial^{2} f}{\partial x^{2}}+\frac{1}{2} M \omega^{2} x^{2}\right)+\left(\frac{-\hbar^{2}}{2 M f} \frac{\partial^{2} f}{\partial y^{2}}-\frac{1}{2} M \omega^{2} y^{2}\right)=E \\
& C o n s \tan t+C o n s \tan t=E \\
& \frac{-\hbar^{2}}{2 M} \frac{\partial^{2} f}{\partial x^{2}}+\frac{1}{2} M \omega^{2} x^{2} f=E_{x} f \\
& \frac{-\hbar^{2}}{2 M} \frac{\partial^{2} g}{\partial y^{2}}+\frac{1}{2} M \omega^{2} y^{2} g=E_{y} g \\
& E_{x}+E_{y}=E \text { Mat 16A, Blumenthal, Fall } \\
& \text { 2009 }
\end{aligned}
$$

F and g are just solutions of the one dimensional harmonic oscillator

$$
f_{n}(x)=H_{n}\left(\frac{x}{a}\right) e^{-\frac{x^{2}}{a^{2}}}
$$

With energy eigenvalue

$$
\begin{aligned}
& E_{n_{x}}=\left(n_{x}+\frac{1}{2}\right) \hbar \omega \\
& n_{x}=0,1,2 \ldots \\
& \substack{\text { EСЕ/Mat } 162 \mathrm{~A}, \text { Blumenthal, Fall } \\
2009}
\end{aligned}
$$

2D Harmonic Oscillator Solutions

$$
\begin{aligned}
& \psi_{n_{x} n_{y}}=H_{n_{x}}\left(\frac{x}{a}\right) H_{n_{y}}\left(\frac{y}{a}\right) e^{-\left(x^{2}+y^{2}\right) / 2 a^{2}} \\
& E=\left(n_{x}+n_{y}+1\right) \hbar \omega \\
& n_{x}=0,1,2, \ldots \\
& n_{y}=0,1,2, \ldots
\end{aligned}
$$

Are these solutions of \hat{L}_{z} ?

- Yes, if $\quad \hat{L}_{z} \psi=L_{z} \psi$

$$
\hat{L}_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi}
$$

- We need to find linear combinations of degenerate solutions that satisfy the above equation
- Note: Degenerate solutions (solutions with the same energy) do not change in time and are called stationary solutions.

Lowest energy solution

$$
\begin{aligned}
& n=0 \quad n_{x}=n_{y}=0 \\
& \psi=e^{-\left(x^{2}+y^{2}\right) / 2 a^{2}}=e^{-r^{2} / 2 a^{2}} \\
& \hat{L}_{z} \psi=\frac{\hbar}{i} \frac{\partial}{\partial \phi} e^{-r^{2} / 2 a^{2}}=0
\end{aligned}
$$

This is a solution of energy and L_{z}

ECE/Mat 162A, Blumenthal, Fall

$\mathrm{N}=1$ Solutions

$$
\begin{array}{llll}
n=1 & n_{x}=1 & n_{y}=0 & \psi_{10}=\frac{2 x}{a} e^{-r^{2} / a^{2}} \\
n=1 & n_{x}=0 & n_{y}=1 & \psi_{01}=\frac{2 y}{a} e^{-r^{2} / a^{2}}
\end{array}
$$

These are not solutions that satisfy:

$$
\begin{gathered}
\hat{L}_{z} \psi=L_{z} \psi \\
\hat{L}_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \\
\text { ECE/Mat 162A, Blumenthal, Fall } \\
\text { 2009 }
\end{gathered}
$$

$\mathrm{N}=1$ Solutions

$$
\begin{array}{llll}
n=1 & n_{x}=1 & n_{y}=0 & \psi_{10}=\frac{2 x}{a} e^{-r^{2} / a^{2}} \\
n=1 & n_{x}=0 & n_{y}=1 & \psi_{01}=\frac{2 y}{a} e^{-r^{2} / a^{2}}
\end{array}
$$

Note:

$$
\begin{aligned}
& r e^{i \phi}=r \cos \phi+i r \sin \phi=x+i y \\
& r e^{-i \phi}=r \cos \phi-i r \sin \phi=x-i y
\end{aligned}
$$

So

$$
\begin{aligned}
& \psi=\psi_{01}+i \psi_{01}=\frac{2(x+i y)}{a} e^{-r^{2} / a^{2}}=\frac{2 r}{a} e^{i \phi} e^{-r^{2} / a^{2}} \\
& \psi=\psi_{01}-i \psi_{01}=\frac{2(x-i y)}{a} e^{-r^{2} / a^{2}}=\frac{2 r}{a} e^{-i \phi} e^{-r^{2} / a^{2}}
\end{aligned}
$$

These are both solutions with $L_{z}=+1$ and -1 respectively.

Dirac Notation

$\psi_{n_{x} n_{y}}$ Is represented by the Dirac ket vector

This notation is a useful shorthand:

$$
|n=1, m=1>=|1,0>+i| 0,1>
$$

The projection of onto all possible positions is the wave function

$$
<x, y \mid n_{x}, n_{y}>=\psi_{n_{x} n_{y}}
$$

