
ECE 162A 
Mat 162A 

Lecture #4: Schroedinger Theory of 
Quantum Mechanics 

Read Chapter 5 of Eisberg,Resnick 
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Principle of Complementarity 

•  Neils Bohr: The wave and particle models 
are complementary; if a measurement 
proves the wave character of radiation or 
matter, then it is impossible to prove the 
particle character in the same experiment. 

•  Which model is used (wave or particle) is 
determined by the experiment. 
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Particle/Wave Duality 
•  All material objects show both particle and wave 

aspects.  
– E=hν	

– P=h/λ	


•  The uncertainty principle means that an 
experiment to determine particle aspects (for 
example position) means that momentum is 
unknown (i.e. wavelength is unknown) and vice 
versa. 
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Rutherford Scattering 
– Rutherford, a former student of Thompson, tested 

this theory by scattering experiments of alpha 
particles (He++) on thin foils of metal. 

– Most alpha particles showed small angle 
scattering.  A few showed large angle 
scattering. 

– An alpha particle is 10,000 times heavier than an 
electron. 

– This is analogous to firing a “15 inch shell at a 
piece of tissue paper and it came back and hit 
you.” –Rutherford.   

How is this possible? 
Think about pool.   
There must be particles of similar mass to He++ 
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Rutherford Model 

– Rutherford proposed that all of the positive 
charge and essentially all of the mass were 
concentrated on a small region in the center 
called the nucleus. 

– Most scattering is electron-alpha scattering 
(small angle). 

– Occasionally, an alpha particle scatters off a 
nucleus giving a large angle (pool ball like) 
scattering. 
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Solution: Niels Bohr 
•  Bohr Postulates: 
•  Electrons move in a circular orbit obeying the laws of classical 

mechanics: F=ma  or 
      1/(4πε0) Ze2/r2 = m v2/r 
•  The only orbits allowed are the ones where its orbital angular 

momentum L is an integral multiple of ħ:  
                   mrv = nħ 

•  An electron in an allowed orbit does not radiate. 
•  An electron can absorb or emit photons with energy E=hν and 

energy is conserved  Ei-Ef=hν	

•  Result:  E=E0/n2  

•  So k=1/λ = v/c = (Ei-Ef)/(hc) =RH/(hc) (1/p2 – 1/n2) where p is 
the number of the initial state and n is the number of the final 
state. 
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Fine structure splitting 
When the spectral lines of the hydrogen 
spectrum are examined at very high 
resolution, they are found to be closely-
spaced doublets. This splitting is called fine 
structure (and was one of the first 
experimental evidences for electron spin).  

How to explain with Bohr 
theory? 
Sommerfeld’s model: 
Attempt to explain using 
elliptical orbits. . Treat 
relativistically.  

However, dashed lines don’t 
appear experimentally.  Why? 
Selection rules…. 
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Origin of Semiconductor 
Bandgap  •  The discrete energy 

states of electrons in an 
atom are broadened from 
the individual atom states 
into energy bands as the 
atoms are brought closer 
together to form a crystal. 

•  When the bandgap 
energy is on the order of 
2eV, room temperature 
thermal energy can break 
covalent bonds and 
accelerate ionized 
electrons into empty 
states in the crystal where 
they can conduct 
electrically -> 
Semiconductors 



Old (Bohr Model) 
Quantum Theory Problems 

•   It only works for one electron systems: 
– Hydrogen, alkali elements 
–  It fails for He, and most other elements. 
–  It allows the calculation of energies, but not 

of rates of transition. 
•  It is intellectually unsatisfying; why is 

momentum quantized? Why don’t 
electrons radiate? 
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Schroedinger’s Equation (1926) 

•  Plausible? 
•  Classical equation of motion: 

–  Kinetic energy + Potential energy = Total energy 
–  Kinetic energy:  
      ½ mv2 = p2/2m = h2/(2m λ2)= ħ2 k2 /(2m)  
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Potential 
environment that 
particle or wave is 

traveling in 

Time development 
and spatial path 

for particle or 
wave 

Rate of change of 
time development 
along spatial path 

for particle or 
wave 

Equivalent to 
gradient of particle 

in spatial 
dimension 



Free particle  
(V=0: No landscape change) 

•  Schroedinger’s 
equation: 

•  Possible Solutions? 
–  Sin or cosine alone do 

not work: 
–  Exponential does 

work: 
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Schroedinger’s equation is linear 

•  No terms in ψ2 (except in voltage term) 
•  Hence, if ψ1 and ψ2 are solutions, then 	


•  ψ=aψ1+bψ2 is a solution (Linear principle of 
differential equations) 
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Schroedinger’s equation is in the 
nonrelativistic limit. 

•  Instead of  

Use (following Dirac) to suggest the form of the equation: 
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Probability of finding a particle 
at a location x at time t 

•  If, at instant t, a measurement is made to locate the particle 
associated with the wave function  ψ(x,t), then the probability that 
the particle will be found at a coordinate between x and x+dx is 

     ψ(x,t) ψ*(x,t)dx 

Where * means complex conjugate. 

•  It does not tell us that a particle in a given energy state will be found 
in a precise location at a certain time, but only the relative 
probabilities that the particle will be found in various locations 
at that time.   

•  The prediction is statistical! 
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Classical Problem Solution 
•  Solve a differential equation (wave equation, heat equation, etc.).  

Determine eigenfunctions (valid solutions): ψi(x,t,…) 

•  Apply boundary conditions (determined by the landscape V and 
physics of wavefunction) and determine solutions (eigenvalues): Ei 

•  The complete solution is the sum of all wave functions (solutions) 
weighted by their probability of occurrence (A) 

•  Apply initial condition to determine the coefficients. Ai 

•  Then SE tells us how the particle/wave will behave exactly for all 
time!. 

15 Blumenthal, ECE162A, Fall 2009 



Quantum Mechanical Problem 
Solution 

•  Solve Schroedinger’s equation. Determine eigenfunctions. ψi(x,t,…). 
Normalize eigenfunctions. 
–  Why do we normalize? Because the probability of the particle/wave being 

somewhere must be 1! 
•  Apply boundary conditions and determine solutions (eigenvalues): Ei 

•  The complete solution is 

•  Apply initial condition to determine the coefficients. Ai 

•  The instantaneous state of the system is exactly known for all time, but 
particle positions are only determined by measurement and the 
average of many measurements is given by (Note this average is the 
same as the interference pattern) 
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The probability is real and positive: 
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Normalize eigenfunctions 
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The solutions are orthogonal 
(Orthonormal) 

Why Orthonormal 
Eigenfunctions ? Because 
the probability weights Ai 
are unique for each wave 
function and not cross 
coupled only for 
orthonormal functions   
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Expectation Values 
•  We may not know the position without making a measurement, 

but we can calculation the average value for the position (the 
expectation value).   

•  This is true for any variable: e.g. energy, momentum, … 
•  The order doesn’t matter here, but will later when we calculate 

the expectation value of operators. 
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Operators 
•  Use operators to represent mathematical operations.  For example: 

–  Momentum and Energy 

•  Note that 

•  So Schroedinger’s equation becomes in operator form 
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Momentum Expectation Value 

The expectation value for the dynamic quantity f(x,p,t) is 

Note: The wave function contains information not just on 
the probability density versus time, but also the 

momentum, energy, or f(x,p,t) 
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Solve Time Dependent Schroedinger 
Equation when V(x) is a function of x only 
Try separation of variables: LHS is a function of x only and RHS is a 
function of t only, so both sides must equal a constant. 

Time 
Independent 
Schroedinger 
Equation 
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Time Independent Schroedinger 
Equation 
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Requirements on Solution 

•  ψ(x), ψ(x)’ must be finite. 
•  ψ(x), ψ(x)’ must be single valued. 
•  ψ(x), ψ(x)’ must be continuous. 
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Problem 

•  Consider a particle in an 
infinite box 
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V(x) 

x 
0 -a/2 +a/2 

∞	
 ∞	




Summary 

•  Define:  orthogonal, orthonormal, eigenvalue, 
eigenfunction, operator, expectation value 

•  Describe separation of variables,  
•  Describe uncertainty principle, principle of 

complementarity. 
•  Show that                 is real and positive 
•                dx   is the probability of finding a particle 

between x and x+dx.  

•  Homework #2 due next Tuesday. 
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