ECE 162A Mat 162A

Lecture \#6: Stationary Solutions Read Chapter 5,6 of Eisberg,Resnick

Eigenvalue Equation

- Using operators, Schroedinger's equation can be expressed as an eigenvalue equation

$$
E_{o p} \psi=E \psi
$$

where

$$
E_{o p}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V
$$

- The solution of the equation involves finding the particular solutions ψ_{n} called eigenfunctions and E_{n} called eigenvalues.

Solutions to SE

- Free particle
- Step potential
- Infinite box
- Finite box
- Harmonic oscillator

$$
\begin{aligned}
& \text { Free particle }(\mathrm{V}=0) \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}=E \psi(x) \\
& \text { Solution: } \quad \psi(x)=\exp (i k x) \\
& \text { where } \frac{\hbar^{2} k^{2}}{2 m}=E
\end{aligned}
$$

The complete solution is

$$
\Psi(x, t)=\psi(x) e^{-i E t / \hbar}=e^{i k z-i(E / \hbar) t}
$$

There are no constraints on E , any value is allowed at this point. This corresponds to a wave moving to the right. -k solutions are also valid.

Step Potential

- Sketch solutions for $E>V_{0}$ and $E<V_{0}$

Step potential

$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)$
Solution: For $E>V_{0}$
For $x<0 \psi(x)=A \exp \left(i k_{1} x\right)+B \exp \left(-i k_{1} x\right)$
For $x>0 \psi(x)=C \exp \left(i k_{2} x\right)+D \exp \left(-i k_{2} x\right)$
where $\quad \frac{\hbar^{2} k_{1}{ }^{2}}{2 m}=E \quad \frac{\hbar^{2} k_{2}{ }^{2}}{2 m}=E-V_{0}$
Boundary conditions
$\psi\left(x \rightarrow 0^{-}\right)=\psi\left(x \rightarrow 0^{+}\right)$
$\frac{d \psi\left(x \rightarrow 0^{-}\right)}{d x}=\frac{d \psi\left(x \rightarrow 0^{+}\right)}{d x}$ The wave is entering from the left.

Step Potential $\left(\mathrm{E}>\mathrm{V}_{0}\right)$

$$
\begin{aligned}
& \text { For } x<0 \psi(x)=A \exp \left(i k_{1} x\right)+B \exp \left(-i k_{1} x\right) \\
& \text { For } x>0 \psi(x)=C \exp \left(i k_{2} x\right)+D \exp \left(-i k_{2} x\right) \\
& \text { Wave fromlef } t . D=0 \\
& \psi: A+B=C \\
& d \psi / d x: i k_{1}(A-B)=i k_{2} C \\
& A=\frac{1}{2}\left(1+\frac{k_{2}}{k_{1}}\right) C \\
& B=\frac{1}{2}\left(1-\frac{k_{2}}{k_{1}}\right) C
\end{aligned}
$$

Normalization

- C can be normalized if the density of electrons is known, or the problem is limited by either
- A large box
- Periodic boundary conditions
- In general, though, what matters is the reflection coefficient R and transmission coefficient T

$$
\begin{array}{r}
R=\frac{B^{*} B}{A^{*} A} \\
T=\frac{C^{*} C}{A^{*} A}
\end{array}
$$

Step Potential $\left(E<V_{0}\right)$

$$
\begin{aligned}
& \text { For } x<0 \psi(x)=A \exp (i k x)+B \exp (-i k x) \\
& \text { For } x>0 \psi(x)=C \exp (-\kappa x)+D \exp (\kappa x)
\end{aligned}
$$

Finite wave f unction $D=0$
$\psi: A+B=C$
$d \psi / d x: i k(A-B)=-\kappa C$
$A=\frac{1}{2}\left(1+\frac{i \kappa}{k}\right) C$
$B=\frac{1}{2}\left(1-\frac{i \kappa}{k}\right) C$

Infinite Well

ONE DIMENSIONAL CASE: $V_{0}=\infty$

Solution has

$$
\begin{aligned}
& -\left(\frac{\hbar^{2}}{2 m}\right) d^{2} \psi / d z^{2}=E \psi \\
& E_{n}=\frac{\hbar^{2}}{2 m} \quad\left(\frac{n \pi}{L_{z}}\right)^{2} n=1,2,3 \cdots
\end{aligned}
$$

to be of this form to terminate to zero at infinite
 walls

Fig. 5. Infinitely deep quantum-well energy levels and wave functions. (Reprinted with permission from Friedr. Vieweg \& Sohn Verlagsgesellschaft mbH, R. Dingle, Festkoerper-
probleme 15, 21 probleme 15, 21 (1975)).

Finite Well

Quantum Semiconductor Structures, Claude Weisbuch and Borge Vinter, Academic Press, 1991

$$
\begin{align*}
& \left(-\frac{\hbar^{2}}{2 m^{*}(z)} \frac{\partial^{2}}{\partial z^{2}}+V_{\mathrm{c}}(z)\right) \chi_{n}(z)=\varepsilon_{n} \chi_{n}(z) \\
& \chi_{n}(z)=A \cos k z, \quad \text { for } \quad|z|<L / 2 \\
& =B \exp [-\kappa(z-L / 2)], \quad \text { for } \quad z>L / 2 \tag{2}\\
& =B \exp [+\kappa(z+L / 2)], \quad \text { for } \quad z<-L / 2
\end{align*}
$$

Even Solution

$$
\begin{aligned}
\chi_{n}(z) & =A \sin k z, & & \text { for } \quad|z|<L / 2, \\
& =B \exp [-\kappa(z-L / 2)], & & \text { for } \quad z>L / 2 \\
& =B \exp [+\kappa(z+L / 2)], & & \text { for } \quad z<-L / 2
\end{aligned}
$$

where

$$
\varepsilon_{n}=\frac{\hbar^{2} k^{2}}{2 m_{A}^{*}}-V_{0}, \quad \varepsilon_{n}=-\frac{\hbar^{2} \kappa^{2}}{2 m_{B}^{*}}, \quad-V_{0}<\varepsilon<0
$$

For the solution of Eq. (2), the continuity conditions at $z= \pm L / 2$ yield

$$
\begin{aligned}
A \operatorname{os}(k L / 2) & =B \\
\left(k / m_{A}^{*}\right) \sin (k L / 2) & =\kappa B / m_{B}^{*}
\end{aligned}
$$

Finite Well

Quantum Semiconductor Structures, Claude Weisbuch and Borge Vinter, Academic Press, 1991

Solving for B in previous two equations and setting equal

$$
\begin{equation*}
\left(k / m_{A}^{*}\right) \tan (k L / 2)=\kappa / m_{B}^{*} \tag{5}
\end{equation*}
$$

Similarly, Eq. (3) yields

$$
\begin{equation*}
k / m_{A}^{*} \operatorname{cotan}(k L / 2)=-\kappa / \mathrm{m}_{B}^{*} \tag{6}
\end{equation*}
$$

The equations can be solved numerically or graphically. A very simple graphical type of solution can be developed if $m_{A}^{*} \approx m_{B}^{*}$. Then, using Eq. (4), Eqs. (5) and (6) can be transformed into implicit equations in k alone:

$$
\begin{array}{lll}
\cos (k L / 2)=k / k_{0}, & \text { for } & \tan k L / 2>0 \\
\sin (k L / 2)=k / k_{0}, & \text { for } & \tan k L / 2<0 \tag{8}
\end{array}
$$

where

$$
\begin{equation*}
k_{0}^{2}=2 m^{*} V_{0} / \hbar^{2} \tag{9}
\end{equation*}
$$

Fig. 7. Graphical solution for Eqs. (7) and (8). Solutions are located at the intersections of the straight line with slope k_{0}^{-1} with curves $y=\cos k L / 2$ (with $\tan k L / 2>0 ; \ldots$; even wave functions) or $y=\sin k L / 2$ (with $\tan k L / 2<0$; ---; odd solutions).

These equations can be visualized graphically (Fig. 7). There is always one bound state. The number of bound states is

$$
\begin{equation*}
1+\operatorname{Int}\left[\left(\frac{2 m_{A}^{*} V_{0} L^{2}}{\pi^{2} \hbar^{2}}\right)^{1 / 2}\right] \tag{10}
\end{equation*}
$$

where $\operatorname{Int}[\mathrm{x}]$ indicates the integer part of x.

