
ECE162A
Homework #3

Problem 1

Consider a particle in a box with:

V(x) =
{

0 for −L/2 ≤ x ≤ L/2
∞ for |x| > L/2

Part A The potential V(x) can be drawn as follows:
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Figure 1: Potential V(x) for an infinite well.

Part B Since V(x) = ∞ for |x| > L/2, the wave function for regions outside the well must be
0. From the continuity boundary condition, we can say that:

ψI(x = −L/2−) = ψI I(x = −L/2+)
ψI I(x = L/2−) = ψI I I(x = L/2+)

where ψI is the wave function for region 1, ψI I is the wave function for region 2, and ψI I I is the
wave function for region 3. Since ψI(x) = ψI I I(x) = 0, we can rewrite the boundary conditions
as:

ψI I(x = −L/2+) = 0

ψI I(x = L/2−) = 0

The wave function for region 2 can be represented as a standing wave, as Ψ(x, t) = ψ(x)e−iEt/h̄

has fixed nodes at−d/2 and d/2. The general solution to the Schroedinger equation1 for a stand-
ing wave is:

ψI I(x) = A sin(kx) + B cos(kx) where k =
√

2mE
h̄

(1)

1For the derivation, see Section 6-7 in Eisberg and Resnick
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Part C After applying the boundary conditions at x = ±d/2 to equation 1, we obtain the
following equations:

A sin
(

kL
2

)
+ B cos

(
kL
2

)
= 0 when x = L/2

−A sin
(

kL
2

)
+ B cos

(
kL
2

)
= 0 when x = −L/2

By adding these two equations, we find:

2B cos
(

kL
2

)
= 0 (2)

Subtracting these two equations results in another relationship:

2A sin
(

kL
2

)
= 0 (3)

For a valid solution to the time-independent Schroedinger equation (TISE), we need values
for A, B, and k that satisfy equations 2 and 3. Since there is no single value of k that causes both
cos

(
kL
2

)
and sin

(
kL
2

)
to equal 0, we can separate the general solution (Equation 1) into two

forms:

ψ(x) = B cos (kx) and cos
(

kL
2

)
= 0 (4)

ψ(x) = A sin (kx) and sin
(

kL
2

)
= 0 (5)

where A = 0 in equation 1 to obtain the first case and B = 0 to find the second.
If cos

(
kL
2

)
= 0, then k must take the following values in equation 4:

kL
2

=
π

2
,

3π

2
,

5π

2
, ...

k =
nπ

L
where n = 1, 3, 5, ...

For sin
(

kL
2

)
= 0, k must take the following values in equation 5:

kL
2

= π, 2π, 3π, ...

k =
nπ

L
where n = 2, 4, 6, ...

Therefore, k is a discrete quantity and ψ(x) can be written as:

ψ(x) = Bn cos (knx) where kn =
nπ

L
n = 1, 3, 5, ... (6)

ψ(x) = An sin (knx) where kn =
nπ

L
n = 2, 4, 6, ... (7)

2



Part D The wave functions for the first three eigen states (n = 1, 2, 3) are:

ψ1(x) = B1 cos
(πx

L

)
ψ2(x) = A2 cos

(
2πx

L

)
ψ3(x) = B3 cos

(
3πx

L

)
The wave functions are plotted in Figure 2.
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Figure 2: Wave function ψ(x) for n = 1 (red), n = 2 (green), and n = 3 (blue).

Part E The first wave function can be normalized by determining the value for B1 that satisfies
the following condition: ∫ L/2

−L/2
B2

1 cos2 (k1x) dx = 1 where k1 =
π

L

By simplifying the expression and chugging through the integration:

B2
1

∫ L/2

−L/2
B2

1 cos2
(πx

L

)
dx = 1

B2
1

∫ L/2

L/2

[
cos

(2πx
L
)
+ 1

2

]
dx = 1

B2
1

2

[
L

2π
sin
(

2πx
L

)
+ x
]L/2

−L/2
= 1

B2
1

2
(L/2 + L/2) = 1
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B1 =

√
2
L

The normalized wave function can then be written as:

ψ1(x) =

√
2
L

cos
(πx

L

)
Part F Energy and k are related by the following expression from Part B:

k =
√

2mE
h̄

Rearranging an solving for energy gives:

E =
h̄2k2

2m

Since we have already shown that k is quantized, the same can be said for energy E by plugging
in valid values for k:

En =
n2h̄2π2

2mL2 where n = 1, 2, 3, ...

Energy is quantized when a particle is confined by a potential, limiting the particle to a certain
region in space (E < Vbarrier).

Part G The condition for continuity of dψ(x)/dx across the boundary is violated in Figure 2.
This is acceptable because we are using an infinite potential, which is only an approximation to
a large potential and is not physically realizable. If the potential were large but finite, we would
have continuity of dψ(x)/dx.

Part H If the potential well has the following properties:

V(x) =
{

Vo for −L ≤ x ≤ L
∞ for |x| > L/2

we can find k and both ψn(x) and En for n = 1, 2, 3. Since the length of the cavity has doubled,
we can write k as:

k =
nπ

2L
where n = 1, 2, 3, ... (8)

The first three wave functions (n = 1, 2, 3) are then:

ψ1(x) = B1 cos
(πx

2L

)
ψ2(x) = A2 cos

(πx
L

)
ψ3(x) = B3 cos

(
3πx
2L

)
where B1 is

B1 =
√

2
2L

=

√
1
L
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Finally, the expression for k =
√

2mE
h̄ from Part B is no longer since Vo 6= 0. We must take Vo into

account within the well, which can be done with a familiar equation:

k =
√

2m(E−Vo)
h̄

Rearranging to solve for E and plugging in k from equation 8 gives us an expression for the eigen
energy values (En):

E =
h̄2

2m
+ Vo

En =
n2h̄2π2

8mL2 + Vo where n = 1, 2, 3, ...

The first three eigen values (n = 1, 2, 3) are then:

E1 =
h̄2π2

8mL2 + Vo

E2 =
h̄2π2

2mL2 + Vo

E3 =
9h̄2π2

8mL2 + Vo

�

Problem 2

Figure 3 represents the finite potential well system used in the Problem 2.
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Figure 3: AlAs/GaAs/AlAs hetero junction quantum well for Problem 2.

Part A The wave functions in regions I and III will take the form of a decaying exponential
since E < Vo for particles confined in the well. The wave function in region II will represent
waves traveling in +x and −x due to reflection off the potential barriers, and has fixed nodes
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similar to the infinite well analyzed in Problem 1. Due to the fixed nodes at x = 0 and x = d, we
can use the solution for a standing wave. Wave functions for regions I, II, and III can be written:

ψI(x) = C exp (kI x) + D exp (−kI x)
ψI I(x) = A sin (kI I x) + B cos (kI I x)

ψI I I(x) = E exp (kI I I x) + F exp (−kI I I x)

where

kI = kI I I =
√

2m(Vo − E)
h̄

kI I =
√

2mE
h̄

Since kI and kI I are positive, we can also set D = 0 since ψ(x) → ∞ for a particle traveling
towards x → −∞. We also can set E = 0 by the same argument.

Before determining the coefficients to the wave equations, we can simplify the boundary
conditions by “shifting” the finite well over by d/2 and the coordinates symmetric around 0.
This can be done by setting x′ = x− d/2, resulting in boundary conditions at x′ = ±d/2. This
is shown in Figure 4
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Figure 4: Potential well after shifting the position along x by d/2.

Applying continuity of ψ(x′) and dψ(x′)/dx′ at x′ = d/2, we have the following equations:

A sin
(

kI I
d
2

)
+ B cos

(
kI I

d
2

)
= F exp

(
−α

d
2

)
(9)

AkI I cos
(

kI I
d
2

)
− BkI I sin

(
kI I

d
2

)
= −αF exp

(
−α

d
2

)
(10)

where α ≡ kI = kI I I . Also, at x′ = −d/2 we have:

A sin
(
−kI I

d
2

)
+ B cos

(
−kI I

d
2

)
= C exp

(
−α

d
2

)
(11)

AkI I cos
(
−kI I

d
2

)
− BkI I sin

(
−kI I

d
2

)
= αC exp

(
−α

d
2

)
(12)
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By manipulating the expressions above, we can obtain:

2A sin
(

kI I
d
2

)
= (F− C) exp

(
−α

d
2

)
from 9− 11

2B cos
(

kI I
d
2

)
= (F + C) exp

(
−α

d
2

)
from 9 + 11

2BkI I sin
(

kI I
d
2

)
= −α(F + C) exp

(
−α

d
2

)
from 10− 12

2AkI I cos
(

kI I
d
2

)
= α(F− C) exp

(
−α

d
2

)
from 10 + 12

These equations have two different solutions, where A = 0 and (F − C) = 0 or B = 0 and
(F + C) = 0.

Taking A = 0, we have:

B cos
(

kI I
d
2

)
= F exp

(
−α

d
2

)
(13)

−BkI I sin
(

kI I
d
2

)
= −αF exp

(
−α

d
2

)
(14)

Dividing these two equations results in the energy condition for the symmetric case:

kI I tan
(

kI I
d
2

)
= α

We can also solve for F and C in terms of B using equation 13:

F = C = B cos
(

kI I
d
2

)
exp

(
α

d
2

)
Taking B = 0, we have:

A sin
(

kI I
d
2

)
= F exp

(
−α

d
2

)
(15)

AkI I cos
(

kI I
d
2

)
= −αF exp

(
−α

d
2

)
(16)

Dividing these two equations results in the energy condition for the antisymmetric case:

−kI I cot
(

kI I
d
2

)
= α

We can also solve for F and C in terms of A using equation 15:

F = −C = A sin
(

kI I
d
2

)
exp

(
α

d
2

)
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We now have two independent solutions: a symmetric solution with A = 0 and an antisym-
metric solution with B = 0. The symmetric solution is:

ψI(x) = B cos
(

kI I
d
2

)
exp

(
α

d
2

)
exp

(
α

(
x− d

2

))
ψI I(x) = B cos

(
kI I

(
x− d

2

))
ψI I I(x) = B cos

(
kI I

d
2

)
exp

(
α

d
2

)
exp

(
−α

(
x− d

2

))
or more simply:

ψI(x) = B cos
(

kI I
d
2

)
exp (αx)

ψI I(x) = B cos
(

kI I

(
x− d

2

))
ψI I I(x) = B cos

(
kI I

d
2

)
exp (−α (x− d))

Similarly, for the antisymmetric case, we have:

ψI(x) = −A sin
(

kI I
d
2

)
exp (αx)

ψI I(x) = A sin
(

kI I

(
x− d

2

))
ψI I I(x) = A sin

(
kI I

d
2

)
exp (−α (x− d))

Part B See Figure 6-26 in Eisberg and Resnick. While this is for a finite well between ±a/2, the
results for this problem will be similar if −a/2 is taken to be 0 and a/2 is taken to be d.

Part C The maximum energy of the lowest energy state (E1) occurs when Vo = ∞. For d = 5nm
and me f f = 0.067me, we can find E1 for an infinite well:

E1 =
h̄2π2

2mL2

=
(1.0545× 10−34)2π2

2(0.067 · 9.1× 10−31)(5× 10−9)2

= 3.60× 10−20 J

=
3.60× 10−20 J

1.602× 10−19 J/eV
= 0.2247 eV

�

Problem 3
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The general expression for the phase component of a value x is:

θ = arctan
(
=[x]
<[x]

)
where =[x] is the imaginary component of x and <[x] is the real component.

Part A: E < V We know that the +x and−x traveling waves have the the following coefficients
from boundary conditions:

A =
1
2

(
1 + i

α

k

)
C (+x)

B =
1
2

(
1− i

α

k

)
C (−x)

We can express reflection as B/A, or:

B
A

=
k− iα
k + iα

=
k2 − α2 − i(2kα)

k2 + α2

The phase difference between B and A then:

θ = arctan
(
−2kα/(k2 + α2)

(k2 − α2)/(k2 + α2)

)

θ = − arctan
(

2kα

k2 − α2

)

Part B: E > V We know that the +x and−x traveling waves have the the following coefficients
from boundary conditions:

A =
1
2

(
1 +

kI I

kI

)
C (+x)

B =
1
2

(
1− kI I

kI

)
C (−x)

We can express reflection as B/A, or:

B
A

=
kI − kI I

kI + kI I

Since =(B/A) = 0,
θ = arctan (0) = 0
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Part C: E < V(∞) In the region where V(x) = ∞, the wave function will be 0. The wave
equation for the region where V(x) = 0 is:

ψV=0 = A exp (ikx) + B exp (−ikx)

The continuity of ψ(x) at the boundary (x = 0) insists that:

A + B = 0
A = −B

The wave equation can then be written as:

ψV=0 = A (exp (ikx)− exp (−ikx))
= A (exp (ikx) + exp (−i(kx− π)))

since exp(iπ) = −1. Therefore, the phase difference θ between the incident and reflected wave
for a step with V(x) = ∞ is:

θ = π

�

Problem 4

Small angle scattering of α particles disagrees with the Rutherford formula because the formula
only takes into consideration scattering due to the coulombic force of the atomic nucleus/nucleii
on the α particle. As a result, scattering due to the α particle interacting with electrons around the
nucleus are effectively ignored. This form of scattering typically results in small angles, while
scattering due to the coulombic force of the nucleus can result in large angles. �

Problem 5

Figure 6 represents the system discussed in Part A.
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Figure 5: α particle scattered from an e−
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Part A We can start with momentum conservation and kinetic energy conservation of the α
particle and stationary electron. For momentum conservation in x and y, we have:

Mv = Mu cos θ + mw cos φ

Mu sin θ = mw sin φ

Conservation of kinetic energy gives:

1
2

Mv2 =
1
2

Mu2 +
1
2

mw2

Rearranging the momentum equations give:

mw cos φ = M (v− u cos θ)
mw sin φ = Mu sin θ

Squaring both sides and adding the two momentum equations results in:

m2w2
(

cos2 φ + sin2 φ
)

= M2
(

v2 − 2vu cos θ + u2 cos2 θ + u2 sin2 θ
)

(17)

m2w2 = M2
(

v2 − 2uv cos θ + u2
)

(18)

The kinetic energy equation can also be written in terms of m2w2:

m2w2 = Mm
(

v2 − u2
)

(19)

Once we equate the expressions from equations 18 and 19:

M2
(

v2 − 2uv cos θ + u2
)

= Mm
(

v2 − u2
)

(20)

cosθ =
v

2u

(
1− m

M

)
+

u
2v

(
1 +

m
M

)
(21)

To find the maximum scattering angle, we can evaluate d cos θ/du = 0 and solve for u:

d
du

[ v
2u

(
1− m

M

)
+

u
2v

(
1 +

m
M

)]
= 0

∴ u = v
√

M−m
M + m

(u > 0)

Substituting this expression for u back into equation 21 gives:

cos θmax =

√
1− m2

M2

Since m << M, we can utilize the second-order taylor series expansion for cos θ and
√

1 + x
where |x| < 1:

cos θmax ≈ 1− θ2
max
2√

1− m2

M2 ≈ 1 +
−m2/M2

2
Equating these expressions and solving for θmax gives:

cos θmax ≈
m
M

=
1

7400
≈ 1× 10−4 rad
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Figure 6: α particle scattered from an Thompson atom.

Part B The incident α particle interacts with positive charge that is dispersed within an atomic
radius of 1Å. For an arbitrary atom with Z protons, the maximum force felt by the α particle in
passage through the atom occurs at the atom’s surface:

Fmax =
(Ze)(2e)
4πεoR2

where e is the charge of an electron. If the particle is deflected by the atom, a certain momentum
∆p (perpendicular to the direction of motion) is associated with the deflection angle. This can be
written as:

∆p =
∫

Fdt = Fm∆t

where ∆t is the time that the α particle is subjected to the atomic forces and equals 2R/v. In this
expression, R is the atomic radius and v is the α particle velocity. Combining equations, we now
have:

∆p =
4Ze2

4πεoRv
Since we expect the scattered angle to be small, we can use the small angle approximation that
tan θ ≈ θ. We can then show that:

θ ≈ ∆p
mv

=
4Ze2

4πεoRmv2

=
2Ze2

4πεoR
(

1
2 mv2

)
This is simply the potential energy of the atomic surface, divided by the kinetic energy of the
incident α particle.

As an example, gold has an atomic number Z = 79 and let the kinetic energy of the α particle
be 5 MeV. We then have:

θ = 8.988× 109 ·
2 · 79

(
1.602× 10−19)2

10−10 · 5× 106 · 1.602× 10−19 = 4.55× 10−4 rad

�

Problem 6
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The angular momentum L is:

L = nh̄ =
nh
2π

Solving for n:

n =
2πL

h
=

2π
(
7.382× 10−34)

6.626× 10−34

n = 7

�
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