ECE162A
Homework #5

E&R - Ch. 6, Problem 2

In this problem, we have a particle traveling in the —x direction and incident on a step located
at x = 0. The particle is initially in the region of x > 0 where the potential V(x) = V, and the
step represents a potential drop to V(x) = 0 for x < 0.

We can keep the coefficients of the wave equations in each region to be consistent with what
we have previously defined. The equation for the region where x > 0 is:

2m(E — V,)

Pr1(x) = Aexp (—ikjix) + Bexp (ikjjx)  where ki = 2

where A is the coefficient for the wave traveling towards —x and B is the reflected wave in the
+x direction. The equation for the region where x < 0 is:

2mE

wl(x) = Cexp (—lk[.X') where kH = ?

where C is the coefficient for the transmitted wave at the potential step. We can eliminate D
since the particle can not be transmitted across the step from —x to +x.

Utilizing boundary conditions for the continuity of di(x)/dx and (x) across the step at
x = 0, we obtain:

A+B=C
—ki1A+ kB = —k,C

Since the objective is to obtain reflection (R) and transmission (T) coefficients, we can rearrange
the two boundary condition equations to find B/ A and C/ A. These are:

B ki —kp

) = 1
(A) kH—l—k[ ( )

C 2kyy

=) = 2
(A) k1[—|—k1 ( )

From Section 6-4, we know that R and T can be expressed as:

B B*B
- A*A
. U[C*C
N v A*A

R




where v; and v have been inverted from Eq 6-41 due to the change in particle direction. Plug-
ging in our values from Equations(l|and |2|and letting v; = hik;/m, R and T can be written as:

R— B_2 _ (kll—k1)2
A? ki + kg
_ (kl _kll)z
ki + ki
- (hkl/m> < 2k;; )2
hkip/m ) \ ki + ki
_ 4k1k%1
 kyr(kpr +kp)?

(k4 kir)?

The equations for R and T are identical to those found in Equations 6-40 and 6-42. L

E&R - Ch. 6, Problem 7

Since this problem is a modification of Problem 5 (E > V, compared to E < V}), the algebra that
results in the tunneling equation did not have to be shown. This was not clear, and the work is
shown below for those who are interested.

Part A The potential for this problem is:

0 for x <0
V(ix) =<V, for 0<x<a
0 for X >a

For the general solution, regions I, II, and III correspond to x < 0,0 < x < g4, and x > a
respectively. The particle is also assumed to be traveling in the +x direction with E > V,. The
general solution is then:

Pr(x) = Aexp (ikx) + Bexp (—ikyx)
¢11(x) = Fexp (ikmx) + Gexp (—ikmx)
Yr11(x) = Cexp (ikx)

where
2mE
k[ = 7
2m(E — V)
kip = "

and D = 0 since the particle can not travel from +x to —x across the step at x = a. Utilizing
boundary conditions for the continuity of (x) across the step at x = 0 and x = 4, we obtain:

A+B=F+G
Fexp (ikjrra) + Gexp (—ikja) = Cexp (ikja)



Similarly, boundary conditions for the continuity of di(x)/dx across the step at x = 0and x = a
results in:

k[A - k[B = k[HF - k[HG
k[HF exp (ikmﬂ) - kH[G exp (—ikma) = k[C exp (lk[a)

We can now start isolating variables to make these equations a little easier to work with. From
the first boundary condition equations, we can write:

A+B—-G=F
and

(A+ B — G) exp (ikjjpa) + Gexp (—ikya) = Cexp (ikia) 3)
— Aexp (ikjra) + Bexp (ikrppa) — G [exp (ikpria) — exp (—ikya)] = Cexp (ika) 4)

Performing the same substitution with the second set of boundary conditions results in:

k1A — kB :kIII(A+B—G)—k11[G (5)
— A (k; —kir) — B (ky + ki) = —2kinG (6)
and
kH[(A + B — G) exp (ik[[[[l) — kIHG exp (—ikma) = k[C exp (ikla) (7)
— kijAexp (ik[[[ll) + krirBexp (ikma) —kinG [exp (—ikjllﬂ) + exp (ikH[LZ)] = kiCexp (ik[ll)
(8)

From Equation [}, we can write:

1 . . . .
G= —— [A (lkl — lkH[) — B (lk[ + lkIH)]
2k11
We can then substitute this expression into Equation [4}
. . 1 . . . .

Aexp (ikia) + Bexp (ikpa) + T [A (ikp — ikprr) — B (ikp + k)] ... )
lexp (—ikrrra) — exp (ikpra)] = Cexp (ikja) (10)

1 ki ) 1 ki .
— A {(E — Tm) exp (—ikra) + (E + Tm) exp (zkma)} + ... (11)

1 ki ) 1 ki . . .
B KE + Tm) exp (—ika) + <§ —~ Tm) exp (lkma)] = Cexp (ikja)  (12)

Similarly, substituting the expression for G into Equation §| gives:

. ) 1 ) ) . .
kA exp (zkma) + k1B exp (zkma) + E [A (lk[ — lkH]) —B (lk[ + lk[[[)] (13)
lexp (—ikyrra) + exp (ikpa)] = k1C exp (ikja) (14)
1 ki ) 1 ky )

— A {(E — Tm) exp (—ikja) — (§ + M) exp (zkma)} + ... (15)

1 ki ) ) (1 ki ) _ } ki )
B|| =4+ ——)exp(—ikja) — | = — —— | exp (ikja)| = C—— exp (ikja 16
[(2 2ky1 P (= ki) 2 2kpp P (ikira) ki p (ki) (16)



Now that we have two equations with three unknowns, we can solve for coefficients and make
substitutions to find the tunneling coefficient. If we rewrite Equation|12|in terms of B and define
two terms (p and g) to aid in the algebra, we have:

ki
=14 L
P kit
ke
1 kit

B Cexp (ika) — é [g exp (—ikyrpa) + pexp (ikra)]
p exp (—ikma) + gexp (ik[][a)

Substituting B into Equation [16/and rearranging to express A in terms of C results in:

pexp (—ikja) — gexp (ikma)) ( , A . : )
. . C kia) — — —ik k
(PeXP (ikia) T qexp (k) ) \© P (K1) =5 [1exp (=ikma) + pexp (Kina)] ) +

A . . k .

0 [g exp (—ikjrra) — pexp (ikpa)] = C—kljl exp (ika)

A . . Apexp(—ikma) —gexp (ik[[[a)
— — (gexp (—ika) — pexp (ikpa)) — — - - X

2 (qexp (=ikina) = pexp (ikiua)) 2 pexp (—ikypa) + gexp (ikra)

. . kr  pexp (—ikjra) — qexp (ikma)) ,
exp (—ikya) + pexp (ika)) = C ( — - - exp (ikja
(qexp (—ikia) + pexp (ikia)) Kl pexp (“ikina) - qexp (ikia) p (ikra)

We can simplify this expression even more by multiplying out terms:
A ( 7 —p ) _
p exp (—ikma) + gexp (ikma)

C (pexp (—iklnll) [k[ — I'(HI] + qexp (Z'k[.Htl) [k[ + k[[[]) exp (ikla)
krir [pexp (—ikiia) + qexp (ikra))

<£) _ k[H exp (—ikla) (E]z — PZ)
A —FVH exp (—ikyya) [1 — %] + % exp (ikjra) [1 + %]
(E) B exp (—ikia) (4% — p?)
A)  —p2exp (—ikja) + g2 exp (ikja)
With g% — p? = —4k;/kj;, we have:
(E) B 4](% exp (—ikra) a7
A p2 exp (—iklllll) — qZ exp (ik[][a)



Now that we have an expression for C/ A, we need to substitute Equation |17|into the transmis-
sion coefficient equatiorﬁ and replace p and g with their respective values:

. U[C*C
i A*A

4% exp (ikja) 4% exp (—ik;a)
N (pz exp (ikma) — q2 exp (—ikma)) (pz exp (—iklllll) — qZ exp (ikma)>
2
) 16 (%)
(p? — qz)2 — p2q2 [exp (ikippa) + exp (—ikgpa)]?
16 (£>2
_ ki

16 (ﬁ>2— 242 [exp (ik —ikya)]?
p>q* [exp (ikjra) +exp (—ikya)]

ki

Utilizing the p/g relationships in the denominator once more, we have:

16 (,j‘—l)z
T — 111

k 2 k2 2 . . 2
16 (ﬁ) — <1 — WL) lexp (ikrra) + exp (—ikyra))

() -
ki E-V,

to obtain a slightly modified version of Equation 6-51:

We can now use the relationship:

7 |1 lexp(kia) +exp (—ikiya))?
16& (% - 1)

Part B By substituting kj; with ik in Equation 6-49:

T— |1_ lexp (kjra) + exp (—kpra))?
16L& (% - 1)
|1 _ lexp (ikia) +exp (—ikra))?
16L& (% - 1)

we have the same expression that was found in Part A. [

1See E&R page 201 for this expression.



E&R - Ch. 6, Problem 8

The transmission coefficients from 6-49 and 6-50 are:
-1

sinh? (kja)
4 (1 4)

E E
T~ 1670 (1 - Vg) exp (—2kpa) (6-50)

T— (14 (6-49)

Part A For a2 eV electron incident on a rectangular potential barrier of height 4 eV and thick-
ness 10719 m, k;a is:

B J 2:9.1 %103 - 4-(10-10)%. 1.602 x 10-1 (1 2)
N 1

(1.055 x 10-34)2 4
—0.724

With this quantity, the transmission coefficient from 6-49 equals:

. 12 -1
- < - sm2h (0.7224)>
43 (1-1)
= 0.6164
and 6-50 equals:

2 2
T~16- 1 (1 - 4_1) exp (—2-0.724)

= 0.9402
The approximation for the transmission coefficient is not appropriate in this case since T is not

very small.

Part B

2:9.1x 1031 -4-(9 x 10-9)%- 1.602 x 10~1 2
kHEl = 1 1

(1.055 x 10-34)2 4
— 65.144

. 12 -1
- ( |, sinh (65.144))

2 2
47 (1-3)
= 1.044 x 107°°
2 2
T~16- 1 (1 — 4_1) exp (—2-65.144)

—1.044 x 1075



Part C

2.9.1x10-31-4-(10-9)% - 1.602 x 10-1° 2
kHIZI 1—-

(1.055 x 10-34) 4
—7.238
-1
i 1.2
T:<L+m?(7%&>
47 (1-1)
= 2.066 x 107°

2 2
TN1@Z<1—Z)ap@272%)

=2.066 x 107

E&R - Ch. 6, Problem 19

The standing wave general solution is:
P(x) = Asin (kx) + B cos (kx)

To verify that this is a valid solution, we need to substitute it into the time-independent Schrédinger
equation (TISE) and determine if an equality exists. Looking at the second spatial derivative, we
have: )
d
{;,bx(zx) = — AK?sin (kx) — Bk? cos (kx)
The TISE for the standing wave general solution is then:

_5 (—Ak2 sin (kx) — Bk? cos (kX)) = E¢(x)
k>
. (Asin (kx) + B cos (kx)) = Egp(x)
212
() = Ep()

Therefore, the standing wave general solution is a solution to the Schrodinger equation due to
the existence of valid eigenvalues (or energy values):
h2k2

E =
2m



| Problem 5 |

In this problem, we consider an infinite spherical potential well with the following properties:

_JO for O0<r<r,
V(r)_{oo for r>r,

In the lowest energy state, we know that n = 1 and I/, m; = 0. Inside the spherical well, we also
have V = 0. With these values, the spherical form of the time-independent Schrédinger wave
equation can be simplified:

1d [ ,dR\ 2u?_ m? 1 d /(.  .doe
Rdr (r E) T ET ) @sn@ e M
1d [ ,d 2uR R

d

We can utilize the definitions provided in the problem, namely that the radial wave function
R(r) = x(r)/r. Evaluating the derivative on the right hand side, we have:

14 {rzi (MﬂJerLz(”E:o

2dr | dr \_ r hr

b o ()]

rlz (dz;(rgr)er d;;(rr) B d);(:)) n 2yh)§£r)E _0
;‘dzfr(zr) + ;—ZEW) =0

The final equation is nearly identical in form to the rectangular Schrédinger equation in free
space. Utilizing the boundary conditions, x(r = r,) = 0 and x(0) = 0, we find that the problem
is similar to that of a infinite 1-D potential well which has the well known eigenenergy value:

h2k>
2y
where k,, = %T for the infinite spherical well. For the case of n =1,
n2 2
= 5 for the lowest energy state.
2urg




| Problem 6

The wave equation for the ground state of the hydrogen atom (Z = 1) and potential is:

1 1\%/? —r
“’100:%(%) exp(z)

—qz
V(r) - d7te,r

where 4, is the Bohr radius and equal to:
471e,h?
H’

Part A The expectation value for potential (V), is:

V)= [ o o #ieor) V) sim(e)dranag

If we take out constants, the integral can be simplified to:

(V)——L/oo/n /Zn X —_r =y xp | ) 2 in(0)drdod
 4m2e,a3 Jr—0 Jo—0 P r P\ )"0 ¢

2 )
o%o r=0J0=0

Evaluating the d6 and d¢ parts of the mtegal we have

The last simplification is to do a substltutlon w1th u=2r/a,, so:

2r
U= —
ao
2
du = —dr
o
— dr = az—odu
The integral then becomes:
2 00
B q / apu a,du
V) = — Zo7 _
< > 71'60615’ r—0 2 exp( u) 2
qZ 00
= — —u)d
Ire.a /r_ouexp( u) du
47te,a,

since [ uexp (—u)du = 1. Substituting in the Bohr radius, we obtain:

____ M
W= (471€,)* h




Part B From Equation 7-22, the energy of the hydrogen atom is:

_
En = 2572
(47t€,)” 2h"n?

For n = 1, we see that E; = (V) /2.

Part C For total energy, we have E = K + V. Using the expectation value from before, total
energy can be expressed as a sum of the expectation values for potential and kinetic energy:

E=(K)+(V)
But, W)
%4
E="7

So we have:

V) _

> = (K) + (V)
Therefore,

10



