ECE162A
Homework \#5

E\&R - Ch. 6, Problem 2

In this problem, we have a particle traveling in the $-x$ direction and incident on a step located at $x=0$. The particle is initially in the region of $x>0$ where the potential $V(x)=V_{0}$ and the step represents a potential drop to $V(x)=0$ for $x<0$.

We can keep the coefficients of the wave equations in each region to be consistent with what we have previously defined. The equation for the region where $x>0$ is:

$$
\psi_{I I}(x)=A \exp \left(-i k_{I I} x\right)+B \exp \left(i k_{I I} x\right) \quad \text { where } \quad k_{I I}=\sqrt{\frac{2 m\left(E-V_{o}\right)}{\hbar^{2}}}
$$

where A is the coefficient for the wave traveling towards $-x$ and B is the reflected wave in the $+x$ direction. The equation for the region where $x<0$ is:

$$
\psi_{I}(x)=C \exp \left(-i k_{I} x\right) \quad \text { where } \quad k_{I I}=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

where C is the coefficient for the transmitted wave at the potential step. We can eliminate D since the particle can not be transmitted across the step from $-x$ to $+x$.

Utilizing boundary conditions for the continuity of $d \psi(x) / d x$ and $\psi(x)$ across the step at $x=0$, we obtain:

$$
\begin{aligned}
A+B & =C \\
-k_{I I} A+k_{I I} B & =-k_{I} C
\end{aligned}
$$

Since the objective is to obtain reflection (R) and transmission (T) coefficients, we can rearrange the two boundary condition equations to find B / A and C / A. These are:

$$
\begin{align*}
& \left(\frac{B}{A}\right)=\frac{k_{I I}-k_{I}}{k_{I I}+k_{I}} \tag{1}\\
& \left(\frac{C}{A}\right)=\frac{2 k_{I I}}{k_{I I}+k_{I}} \tag{2}
\end{align*}
$$

From Section 6-4, we know that R and T can be expressed as:

$$
\begin{aligned}
R & =\frac{B^{*} B}{A^{*} A} \\
T & =\frac{v_{I} C^{*} C}{v_{I I} A^{*} A}
\end{aligned}
$$

where v_{I} and $v_{I I}$ have been inverted from Eq 6-41 due to the change in particle direction. Plugging in our values from Equations 1 and 2 and letting $v_{i}=\hbar k_{i} / m, R$ and T can be written as:

$$
\begin{aligned}
R & =\frac{B^{2}}{A^{2}}=\left(\frac{k_{I I}-k_{I}}{k_{I I}+k_{I}}\right)^{2} \\
& =\left(\frac{k_{I}-k_{I I}}{k_{I}+k_{I I}}\right)^{2} \\
T & =\left(\frac{\hbar k_{I} / m}{\hbar k_{I I} / m}\right)\left(\frac{2 k_{I I}}{k_{I I}+k_{I}}\right)^{2} \\
& =\frac{4 k_{I} k_{I I}^{2}}{k_{I I}\left(k_{I I}+k_{I}\right)^{2}} \\
& =\frac{4 k_{I} k_{I I}}{\left(k_{I}+k_{I I}\right)^{2}}
\end{aligned}
$$

The equations for R and T are identical to those found in Equations 6-40 and 6-42.

E\&R - Ch. 6, Problem 7

Since this problem is a modification of Problem 5 ($E>V_{o}$ compared to $E<V_{o}$), the algebra that results in the tunneling equation did not have to be shown. This was not clear, and the work is shown below for those who are interested.

Part A The potential for this problem is:

$$
V(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
V_{0} & \text { for } & 0<x<a \\
0 & \text { for } & x>a
\end{array}\right.
$$

For the general solution, regions I, II, and III correspond to $x<0,0<x<a$, and $x>a$ respectively. The particle is also assumed to be traveling in the $+x$ direction with $E>V_{o}$. The general solution is then:

$$
\begin{aligned}
\psi_{I}(x) & =A \exp \left(i k_{I} x\right)+B \exp \left(-i k_{I} x\right) \\
\psi_{I I}(x) & =F \exp \left(i k_{I I} x\right)+G \exp \left(-i k_{I I I} x\right) \\
\psi_{I I I}(x) & =C \exp \left(i k_{I} x\right)
\end{aligned}
$$

where

$$
\begin{aligned}
k_{I} & =\sqrt{\frac{2 m E}{\hbar^{2}}} \\
k_{I I I} & =\sqrt{\frac{2 m\left(E-V_{o}\right)}{\hbar^{2}}}
\end{aligned}
$$

and $D=0$ since the particle can not travel from $+x$ to $-x$ across the step at $x=a$. Utilizing boundary conditions for the continuity of $\psi(x)$ across the step at $x=0$ and $x=a$, we obtain:

$$
\begin{aligned}
A+B & =F+G \\
F \exp \left(i k_{I I I} a\right)+G \exp \left(-i k_{I I I} a\right) & =C \exp \left(i k_{I} a\right)
\end{aligned}
$$

Similarly, boundary conditions for the continuity of $d \psi(x) / d x$ across the step at $x=0$ and $x=a$ results in:

$$
\begin{aligned}
k_{I} A-k_{I} B & =k_{I I I} F-k_{I I I} G \\
k_{I I I} F \exp \left(i k_{I I I} a\right)-k_{I I I} G \exp \left(-i k_{I I I} a\right) & =k_{I} C \exp \left(i k_{I} a\right)
\end{aligned}
$$

We can now start isolating variables to make these equations a little easier to work with. From the first boundary condition equations, we can write:

$$
A+B-G=F
$$

and

$$
\begin{align*}
& (A+B-G) \exp \left(i k_{I I I} a\right)+G \exp \left(-i k_{I I I} a\right)=C \exp \left(i k_{I} a\right) \tag{3}\\
& \hookrightarrow A \exp \left(i k_{I I I} a\right)+B \exp \left(i k_{I I I} a\right)-G\left[\exp \left(i k_{I I I} a\right)-\exp \left(-i k_{I I I} a\right)\right]=C \exp \left(i k_{I} a\right) \tag{4}
\end{align*}
$$

Performing the same substitution with the second set of boundary conditions results in:

$$
\begin{align*}
& k_{I} A-k_{I} B=k_{I I I}(A+B-G)-k_{I I I} G \tag{5}\\
& \hookrightarrow A\left(k_{I}-k_{I I I}\right)-B\left(k_{I}+k_{I I I}\right)=-2 k_{I I I} G \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
& k_{I I I}(A+B-G) \exp \left(i k_{I I I} a\right)-k_{I I I} G \exp \left(-i k_{I I I} a\right)=k_{I} C \exp \left(i k_{I} a\right) \tag{7}\\
& \hookrightarrow k_{I I I} A \exp \left(i k_{I I I} a\right)+k_{I I I} B \exp \left(i k_{I I I} a\right)-k_{I I I} G\left[\exp \left(-i k_{I I I} a\right)+\exp \left(i k_{I I I} a\right)\right]=k_{I} C \exp \left(i k_{I} a\right) \tag{8}
\end{align*}
$$

From Equation 6, we can write:

$$
G=-\frac{1}{2 k_{I I I}}\left[A\left(i k_{I}-i k_{I I I}\right)-B\left(i k_{I}+i k_{I I I}\right)\right]
$$

We can then substitute this expression into Equation 4 :

$$
\begin{align*}
& A \exp \left(i k_{I I I} a\right)+B \exp \left(i k_{I I I} a\right)+\frac{1}{2 k_{I I I}}\left[A\left(i k_{I}-i k_{I I I}\right)-B\left(i k_{I}+i k_{I I I}\right)\right] \ldots \tag{9}\\
& \quad\left[\exp \left(-i k_{I I I} a\right)-\exp \left(i k_{I I I} a\right)\right]=C \exp \left(i k_{I} a\right) \tag{10}\\
& \hookrightarrow A\left[\left(\frac{1}{2}-\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(-i k_{I I I} a\right)+\left(\frac{1}{2}+\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(i k_{I I I} a\right)\right]+\ldots \tag{11}\\
& B\left[\left(\frac{1}{2}+\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(-i k_{I I I} a\right)+\left(\frac{1}{2}-\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(i k_{I I I} a\right)\right]=C \exp \left(i k_{I} a\right) \tag{12}
\end{align*}
$$

Similarly, substituting the expression for G into Equation 8 gives:

$$
\begin{align*}
& k_{I I I} A \exp \left(i k_{I I I} a\right)+k_{I I I} B \exp \left(i k_{I I I} a\right)+\frac{1}{2}\left[A\left(i k_{I}-i k_{I I I}\right)-B\left(i k_{I}+i k_{I I I}\right)\right] \ldots \tag{13}\\
& \quad\left[\exp \left(-i k_{I I I} a\right)+\exp \left(i k_{I I I} a\right)\right]=k_{I} C \exp \left(i k_{I} a\right) \tag{14}\\
& \hookrightarrow A\left[\left(\frac{1}{2}-\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(-i k_{I I I} a\right)-\left(\frac{1}{2}+\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(i k_{I I I} a\right)\right]+\ldots \tag{15}\\
& B\left[\left(\frac{1}{2}+\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(-i k_{I I I} a\right)-\left(\frac{1}{2}-\frac{k_{I}}{2 k_{I I I}}\right) \exp \left(i k_{I I I} a\right)\right]=C \frac{k_{I}}{k_{I I I}} \exp \left(i k_{I} a\right) \tag{16}
\end{align*}
$$

Now that we have two equations with three unknowns, we can solve for coefficients and make substitutions to find the tunneling coefficient. If we rewrite Equation 12 in terms of B and define two terms (p and q) to aid in the algebra, we have:

$$
\begin{aligned}
p & =1+\frac{k_{I}}{k_{I I I}} \\
q & =1-\frac{k_{I}}{k_{I I I}} \\
\therefore B & =\frac{C \exp \left(i k_{I} a\right)-\frac{A}{2}\left[q \exp \left(-i k_{I I I} a\right)+p \exp \left(i k_{I I I} a\right)\right]}{p \exp \left(-i k_{I I I} a\right)+q \exp \left(i k_{I I I} a\right)}
\end{aligned}
$$

Substituting B into Equation 16 and rearranging to express A in terms of C results in:

$$
\begin{aligned}
& \left(\frac{p \exp \left(-i k_{I I I} a\right)-q \exp \left(i k_{I I I} a\right)}{p \exp \left(-i k_{I I I} a\right)+q \exp \left(i k_{I I I} a\right)}\right)\left(C \exp \left(i k_{I} a\right)-\frac{A}{2}\left[q \exp \left(-i k_{I I I} a\right)+p \exp \left(i k_{I I I} a\right)\right]\right)+\ldots \\
& \frac{A}{2}\left[q \exp \left(-i k_{I I I} a\right)-p \exp \left(i k_{I I I} a\right)\right]=C \frac{k_{I}}{k_{I I I}} \exp \left(i k_{I} a\right) \\
& \hookrightarrow \frac{A}{2}\left(q \exp \left(-i k_{I I I} a\right)-p \exp \left(i k_{I I I} a\right)\right)-\frac{A}{2} \frac{p \exp \left(-i k_{I I I} a\right)-q \exp \left(i k_{I I I} a\right)}{p \exp \left(-i k_{I I I} a\right)+q \exp \left(i k_{I I I} a\right)} \times \ldots \\
& \quad\left(q \exp \left(-i k_{I I I} a\right)+p \exp \left(i k_{I I I} a\right)\right)=C\left(\frac{k_{I}}{k_{I I I}}-\frac{p \exp \left(-i k_{I I I} a\right)-q \exp \left(i k_{I I I} a\right)}{p \exp \left(-i k_{I I I} a\right)+q \exp \left(i k_{I I I} a\right)}\right) \exp \left(i k_{I} a\right)
\end{aligned}
$$

We can simplify this expression even more by multiplying out terms:

$$
\begin{aligned}
& A\left(\frac{q^{2}-p^{2}}{p \exp \left(-i k_{I I I} a\right)+q \exp \left(i k_{I I I} a\right)}\right)= \\
& \quad C\left(\frac{p \exp \left(-i k_{I I I} a\right)\left[k_{I}-k_{I I I}\right]+q \exp \left(i k_{I I I} a\right)\left[k_{I}+k_{I I I}\right]}{k_{I I I}\left[p \exp \left(-i k_{I I I} a\right)+q \exp \left(i k_{I I I} a\right)\right]}\right) \exp \left(i k_{I} a\right) \\
& \left(\frac{C}{A}\right)=\frac{k_{I I I} \exp \left(-i k_{I} a\right)\left(q^{2}-p^{2}\right)}{-\frac{p}{k_{I I I}} \exp \left(-i k_{I I I} a\right)\left[1-\frac{k_{I}}{k_{I I I}}\right]+\frac{q}{k_{I I I}} \exp \left(i k_{I I I} a\right)\left[1+\frac{k_{I}}{k_{I I I}}\right]} \\
& \left(\frac{C}{A}\right)=\frac{\exp \left(-i k_{I} a\right)\left(q^{2}-p^{2}\right)}{-p^{2} \exp \left(-i k_{I I I} a\right)+q^{2} \exp \left(i k_{I I I} a\right)}
\end{aligned}
$$

With $q^{2}-p^{2}=-4 k_{I} / k_{I I I}$, we have:

$$
\begin{equation*}
\left(\frac{C}{A}\right)=\frac{4 \frac{k_{I}}{k_{I I}} \exp \left(-i k_{I} a\right)}{p^{2} \exp \left(-i k_{I I I} a\right)-q^{2} \exp \left(i k_{I I I} a\right)} \tag{17}
\end{equation*}
$$

Now that we have an expression for C / A, we need to substitute Equation 17 into the transmission coefficient equation ${ }^{1}$ and replace p and q with their respective values:

$$
\begin{aligned}
T & =\frac{v_{I} C^{*} C}{v_{I} A^{*} A} \\
& =\left(\frac{4 \frac{k_{I}}{k_{I I I}} \exp \left(i k_{I} a\right)}{p^{2} \exp \left(i k_{I I I} a\right)-q^{2} \exp \left(-i k_{I I I} a\right)}\right)\left(\frac{4 \frac{k_{I}}{k_{I I I}} \exp \left(-i k_{I} a\right)}{p^{2} \exp \left(-i k_{I I I} a\right)-q^{2} \exp \left(i k_{I I I} a\right)}\right) \\
& =\frac{16\left(\frac{k_{I}}{k_{I I}}\right)^{2}}{\left(p^{2}-q^{2}\right)^{2}-p^{2} q^{2}\left[\exp \left(i k_{I I I} a\right)+\exp \left(-i k_{I I I} a\right)\right]^{2}} \\
& =\frac{16\left(\frac{k_{I}}{k_{I I I}}\right)^{2}}{16\left(\frac{k_{I}}{k_{I I I}}\right)^{2}-p^{2} q^{2}\left[\exp \left(i k_{I I I} a\right)+\exp \left(-i k_{I I I} a\right)\right]^{2}}
\end{aligned}
$$

Utilizing the p / q relationships in the denominator once more, we have:

$$
T=\frac{16\left(\frac{k_{I}}{k_{I I I}}\right)^{2}}{16\left(\frac{k_{I}}{k_{I I I}}\right)^{2}-\left(1-\frac{k_{I}^{2}}{k_{I I I}^{2}}\right)^{2}\left[\exp \left(i k_{I I I} a\right)+\exp \left(-i k_{I I I} a\right)\right]^{2}}
$$

We can now use the relationship:

$$
\left(\frac{k_{I}}{k_{I I I}}\right)^{2}=\frac{E}{E-V_{o}}
$$

to obtain a slightly modified version of Equation 6-51:

$$
T=\left[1-\frac{\left[\exp \left(i k_{I I I} a\right)+\exp \left(-i k_{I I I} a\right)\right]^{2}}{16 \frac{E}{V_{o}}\left(\frac{E}{V_{o}}-1\right)}\right]
$$

Part B By substituting $k_{I I}$ with $i k_{I I I}$ in Equation 6-49:

$$
\begin{aligned}
T & =\left[1-\frac{\left[\exp \left(k_{I I} a\right)+\exp \left(-k_{I I} a\right)\right]^{2}}{16 \frac{E}{V_{o}}\left(\frac{E}{V_{o}}-1\right)}\right] \\
& \Rightarrow\left[1-\frac{\left[\exp \left(i k_{I I I} a\right)+\exp \left(-i k_{I I I} a\right)\right]^{2}}{16 \frac{E}{V_{o}}\left(\frac{E}{V_{o}}-1\right)}\right]
\end{aligned}
$$

we have the same expression that was found in Part A.

[^0]
E\&R - Ch. 6, Problem 8

The transmission coefficients from 6-49 and 6-50 are:

$$
\begin{align*}
T & =\left(1+\frac{\sinh ^{2}\left(k_{I I} a\right)}{4 \frac{E}{V_{o}}\left(1-\frac{E}{V_{o}}\right)}\right)^{-1} \tag{6-49}\\
T & \approx 16 \frac{E}{V_{o}}\left(1-\frac{E}{V_{o}}\right) \exp \left(-2 k_{I I} a\right) \tag{6-50}
\end{align*}
$$

Part A For a 2 eV electron incident on a rectangular potential barrier of height 4 eV and thickness $10^{-10} \mathrm{~m}, k_{I I} a$ is:

$$
\begin{aligned}
k_{I I} a & =\sqrt{\frac{2 m V_{o} a^{2}}{\hbar^{2}}\left(1-\frac{E}{V_{o}}\right)} \\
& =\sqrt{\frac{2 \cdot 9.1 \times 10^{-31} \cdot 4 \cdot\left(10^{-10}\right)^{2} \cdot 1.602 \times 10^{-19}}{\left(1.055 \times 10^{-34}\right)^{2}}\left(1-\frac{2}{4}\right)} \\
& =0.724
\end{aligned}
$$

With this quantity, the transmission coefficient from 6-49 equals:

$$
\begin{aligned}
T & =\left(1+\frac{\sinh ^{2}(0.724)}{4 \frac{2}{4}\left(1-\frac{2}{4}\right)}\right)^{-1} \\
& =0.6164
\end{aligned}
$$

and 6-50 equals:

$$
\begin{aligned}
T & \approx 16 \cdot \frac{2}{4}\left(1-\frac{2}{4}\right) \exp (-2 \cdot 0.724) \\
& =0.9402
\end{aligned}
$$

The approximation for the transmission coefficient is not appropriate in this case since T is not very small.

Part B

$$
\begin{aligned}
k_{I I} a & =\sqrt{\frac{2 \cdot 9.1 \times 10^{-31} \cdot 4 \cdot\left(9 \times 10^{-9}\right)^{2} \cdot 1.602 \times 10^{-19}}{\left(1.055 \times 10^{-34}\right)^{2}}\left(1-\frac{2}{4}\right)} \\
& =65.144 \\
T & =\left(1+\frac{\sinh ^{2}(65.144)}{4 \frac{2}{4}\left(1-\frac{2}{4}\right)}\right)^{-1} \\
& =1.044 \times 10^{-56} \\
T & \approx 16 \cdot \frac{2}{4}\left(1-\frac{2}{4}\right) \exp (-2 \cdot 65.144) \\
& =1.044 \times 10^{-56}
\end{aligned}
$$

Part C

$$
\begin{aligned}
k_{I I} a & =\sqrt{\frac{2 \cdot 9.1 \times 10^{-31} \cdot 4 \cdot\left(10^{-9}\right)^{2} \cdot 1.602 \times 10^{-19}}{\left(1.055 \times 10^{-34}\right)^{2}}\left(1-\frac{2}{4}\right)} \\
& =7.238
\end{aligned}
$$

$$
T=\left(1+\frac{\sinh ^{2}(7.238)}{4 \frac{2}{4}\left(1-\frac{2}{4}\right)}\right)^{-1}
$$

$$
=2.066 \times 10^{-6}
$$

$$
T \approx 16 \cdot \frac{2}{4}\left(1-\frac{2}{4}\right) \exp (-2 \cdot 7.238)
$$

$$
=2.066 \times 10^{-6}
$$

E\&R - Ch. 6, Problem 19

The standing wave general solution is:

$$
\psi(x)=A \sin (k x)+B \cos (k x)
$$

To verify that this is a valid solution, we need to substitute it into the time-independent Schrödinger equation (TISE) and determine if an equality exists. Looking at the second spatial derivative, we have:

$$
\frac{d^{2} \psi(x)}{d x^{2}}=-A k^{2} \sin (k x)-B k^{2} \cos (k x)
$$

The TISE for the standing wave general solution is then:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m}\left(-A k^{2} \sin (k x)-B k^{2} \cos (k x)\right)=E \psi(x) \\
& \frac{\hbar^{2} k^{2}}{2 m}(A \sin (k x)+B \cos (k x))=E \psi(x) \\
& \frac{\hbar^{2} k^{2}}{2 m} \psi(x)=E \psi(x)
\end{aligned}
$$

Therefore, the standing wave general solution is a solution to the Schrödinger equation due to the existence of valid eigenvalues (or energy values):

$$
E=\frac{\hbar^{2} k^{2}}{2 m}
$$

Problem 5

In this problem, we consider an infinite spherical potential well with the following properties:

$$
V(r)=\left\{\begin{array}{ccc}
0 & \text { for } & 0<r<r_{0} \\
\infty & \text { for } & r>r_{0}
\end{array}\right.
$$

In the lowest energy state, we know that $n=1$ and $l, m_{l}=0$. Inside the spherical well, we also have $V=0$. With these values, the spherical form of the time-independent Schrödinger wave equation can be simplified:

$$
\begin{aligned}
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 \mu r^{2}}{\hbar^{2}} E & =\frac{m_{l}^{2}}{\sin ^{2}(\theta)}-\frac{1}{\Theta \sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d \Theta}{d \theta}\right) \\
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 \mu R}{\hbar^{2}} E & =l(l+1) \frac{R}{r^{2}} \\
\Rightarrow \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 \mu R}{\hbar^{2}} E & =0
\end{aligned}
$$

We can utilize the definitions provided in the problem, namely that the radial wave function $R(r)=\chi(r) / r$. Evaluating the derivative on the right hand side, we have:

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{d}{d r}\left[r^{2} \frac{d}{d r}\left(\frac{\chi(r)}{r}\right)\right]+\frac{2 \mu \chi(r)}{\hbar^{2} r} E=0 \\
& \frac{1}{r^{2}} \frac{d}{d r}\left[r^{2}\left(\frac{1}{r} \frac{d \chi(r)}{d r}-\frac{\chi(r)}{r^{2}}\right)\right]+\frac{2 \mu \chi(r)}{\hbar^{2} r} E=0 \\
& \frac{1}{r^{2}}\left(\frac{d^{2} \chi(r)}{d r^{2}} r+\frac{d \chi(r)}{d r}-\frac{d \chi(r)}{d r}\right)+\frac{2 \mu \chi(r)}{\hbar^{2} r} E=0 \\
\Rightarrow & \frac{d^{2} \chi(r)}{d r^{2}}+\frac{2 \mu}{\hbar^{2}} E \chi(r)=0
\end{aligned}
$$

The final equation is nearly identical in form to the rectangular Schrödinger equation in free space. Utilizing the boundary conditions, $\chi\left(r=r_{o}\right)=0$ and $\chi(0)=0$, we find that the problem is similar to that of a infinite 1-D potential well which has the well known eigenenergy value:

$$
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 \mu}
$$

where $k_{n}=\frac{n \pi}{r_{o}}$ for the infinite spherical well. For the case of $n=1$,

$$
E=\frac{\hbar^{2} \pi^{2}}{2 \mu r_{o}^{2}} \quad \text { for the lowest energy state. }
$$

Problem 6

The wave equation for the ground state of the hydrogen atom $(Z=1)$ and potential is:

$$
\begin{aligned}
\psi_{100} & =\frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \exp \left(\frac{-r}{a_{0}}\right) \\
V(r) & =\frac{-q^{2}}{4 \pi \epsilon_{0} r}
\end{aligned}
$$

where a_{0} is the Bohr radius and equal to:

$$
\frac{4 \pi \epsilon_{o} \hbar^{2}}{\mu q^{2}}
$$

Part A The expectation value for potential, $\langle V\rangle$, is:

$$
\langle V\rangle=\int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \psi_{100}^{*}(r) V(r) \psi_{100}(r) r^{2} \sin (\theta) d r d \theta d \phi
$$

If we take out constants, the integral can be simplified to:

$$
\begin{aligned}
\langle V\rangle & =-\frac{q^{2}}{4 \pi^{2} \epsilon_{0} a_{0}^{3}} \int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \exp \left(\frac{-r}{a_{0}}\right) \cdot \frac{1}{r} \cdot \exp \left(\frac{-r}{a_{0}}\right) r^{2} \sin (\theta) d r d \theta d \phi \\
& =-\frac{q^{2}}{4 \pi^{2} \epsilon_{o} a_{0}^{3}} \int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r \exp \left(\frac{-2 r}{a_{0}}\right) \sin (\theta) d r d \theta d \phi
\end{aligned}
$$

Evaluating the $d \theta$ and $d \phi$ parts of the integal, we have:

$$
\langle V\rangle=-\frac{q^{2}}{4 \pi^{2} \epsilon_{0} a_{o}^{3}}(4 \pi) \int_{r=0}^{\infty} r \exp \left(\frac{-2 r}{a_{0}}\right) d r
$$

The last simplification is to do a substitution with $u=2 r / a_{0}$, so:

$$
\begin{aligned}
u & =\frac{2 r}{a_{0}} \\
d u & =\frac{2}{a_{0}} d r \\
\hookrightarrow d r & =\frac{a_{0}}{2} d u
\end{aligned}
$$

The integral then becomes:

$$
\begin{aligned}
\langle V\rangle & =-\frac{q^{2}}{\pi \epsilon_{o} a_{0}^{3}} \int_{r=0}^{\infty} \frac{a_{o} u}{2} \exp (-u) \frac{a_{o} d u}{2} \\
& =-\frac{q^{2}}{4 \pi \epsilon_{o} a_{0}} \int_{r=0}^{\infty} u \exp (-u) d u \\
& =-\frac{q^{2}}{4 \pi \epsilon_{0} a_{0}}
\end{aligned}
$$

since $\int_{r=0}^{\infty} u \exp (-u) d u=1$. Substituting in the Bohr radius, we obtain:

$$
\langle V\rangle=-\frac{\mu q^{4}}{\left(4 \pi \epsilon_{o}\right)^{2} \hbar^{2}}
$$

Part B From Equation 7-22, the energy of the hydrogen atom is:

$$
E_{n}=-\frac{\mu q^{4}}{\left(4 \pi \epsilon_{o}\right)^{2} 2 \hbar^{2} n^{2}}
$$

For $n=1$, we see that $E_{1}=\langle V\rangle / 2$.

Part C For total energy, we have $E=K+V$. Using the expectation value from before, total energy can be expressed as a sum of the expectation values for potential and kinetic energy:

$$
E=\langle K\rangle+\langle V\rangle
$$

But,

$$
E=\frac{\langle V\rangle}{2}
$$

So we have:

$$
\frac{\langle V\rangle}{2}=\langle K\rangle+\langle V\rangle
$$

Therefore,

$$
\langle K\rangle=-\frac{\langle V\rangle}{2}
$$

[^0]: ${ }^{1}$ See E\&R page 201 for this expression.

