
ECE162A
Homework #6

E&R - Ch. 5, Problem 23

For the particle moving in a potential V(x), which is shown in Figure 5-22, a particle will either
be confined and have discrete energy levels, not confined and have a continuum of allowed
energy values, or be below the potential which indicates that no allowed energy values exist.

Part A E < V0, there are no allowed values of E (negative KE if there were allowed states).

Part B V0 < E < V1, the particle is confined and there are discrete values for the allowed E.

Part C V1 < E < V2, the particle is confined and there are discrete values for the allowed E.

Part D V2 < E < V3, the particle is not confined and there are a continuum of allowed values
for E.

Part E V3 <, the particle is not confined and there are a continuum of allowed values for E. �

E&R - Ch. 6, Problem 12

The exponential general solutions are:

ψI(x) = C exp (kI I x) + D exp (−kI I x)
ψI I I(x) = F exp (kI I x) + G exp (−kI I x)

where

kI I =

√
2m(Vo − E)

h̄2

Let’s start with ψI(x). Substituting this into the time-independent Schrödinger equation results
in:

h̄2

2m
d2ψ(x)

dx2 = [Vo − E]ψ(x)

h̄2

2m
k2

I I (C exp (kI I x) + D exp (−kI I x)) = [Vo − E] (C exp (kI I x) + D exp (−kI I x))

h̄2k2
I I

2m
= [Vo − E]
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Finally, we can substitute kI I into the equation above:

h̄2k2
I I

2m
= [Vo − E]

h̄2

2m

(
2m[Vo − E]

h̄2

)
= [Vo − E]

↪→ Vo − E = Vo − E

Therefore, ψI(x) is a valid solution since it satisfies the time-independent Schrödinger equation.
For ψI I I(x), substitution into the time-independent Schrödinger equation produces:

h̄2

2m
k2

I I (F exp (kI I x) + G exp (−kI I x)) = [Vo − E] (F exp (kI I x) + G exp (−kI I x))

h̄2k2
I I

2m
= [Vo − E]

which is the same result that was found for ψI(x). Therefore, both ψI(x) and ψI I(x) are valid
solutions to the time-independent Schrödinger equation. �

E&R - Ch. 6, Problem 18

Due to the complex nature of having two interfaces for reflection and transmission, a set of
equations needs to be used to solve for transmission from region I (x < 0) to region III (x > a).
The particle has an energy of 9Vo and the potential function has the following form:

V(x) =


8Vo for x < 0

0 for 0 < x < a
5Vo for x > a

With this information, we can set up the values of k for each region. These are:

kI =

√
2m(9Vo − 8Vo)

h̄2 =

√
2mVo

h̄2

kI I =

√
2m(9Vo − 0)

h̄2 =

√
2m(9Vo)

h̄2

kI I I =

√
2m(9Vo − 5Vo)

h̄2 =

√
2m(4Vo)

h̄2

These values of k can be rewritten in terms of kI , which significantly simplifies the algebra that
is used to determine various coefficients. The new values for k are then:

kI = k
kI I = 3k
kI I I = 2k
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We can also define the wave functions for each region with the new k values:

ψI(x) = A exp (ikx) + B exp (−ikx)
ψI I(x) = F exp (−i3kx) + G exp (i3kx)
ψI I I(x) = C exp (i2kx)

Utilizing boundary conditions for the continuity of ψ(x) across the step at x = 0 and x = a, we
obtain:

A + B = F + G (1)
F exp (−i3ka) + G exp (i3ka) = C exp (i2ka) (2)

The boundary conditions for continuity of dψ(x)/dx at x = 0 and x = a result in:

k (A + B) = 3k (F + G)
3k (G exp (i3ka)− F exp (−i3ka)) = 2Ck exp (i2ka)

which can be simplified to:

A + B = 3 (F + G) (3)
3 (G exp (i3ka)− F exp (−i3ka)) = 2C exp (i2ka) (4)

If we set z = exp (ika), the boundary condition equations (2 and 4) at the x = a interface can be
written as:

Fz−3 + Gz3 = Cz2 (5)

3
(

Gz3 − Fz−3
)

= 2Cz2 (6)

The transmission coefficient can be found once we determine what (C/A) is. This can be done
by working with equations 1, 3, 5 and 6, which results in:(

C
A

)
=

6z
10− z6

The transmission coefficient is then:

T =
(

vI I I

vI

)
C∗C
A∗A

=
(

h̄kI I I

h̄kI

) [(
6z

10− z6

)∗ ( 6z
10− z6

)]
= 2

(
36z∗z

(10− (z∗)6)(10− z6)

)
The quantity z∗z = 1 since z is a purely complex exponential. The denominator can be expressed
as: (

10− (z∗)6
) (

10− z6
)

↪→100− 10 (exp (−i6ka) + exp (i6ka)) + 1
⇒101− 10 (2 cos (6ka))
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The transmission coefficient is then:

T =
72

101− 20 cos (6ka)

�

E&R - Ch. 6, Problem 23

For this problem, we know that the energy of a given eigenvalue is:

En =
h̄2π2n2

2ma2

Part A To find the adjacent eigenvalue, we need to find the difference between En and En+1.
The value of En+1 is:

En+1 =
h̄2π2(n + 1)2

2ma2

The fractional difference then becomes:
∆En

En
=

En+1 − En

En

=
h̄2π2

2ma2

[
(n + 1)2 − n2]

h̄2π2n2

2ma2

=
(n + 1)2 − n2

n2

=
n2 + 2n + 1− n2

n2

⇒ 2n + 1
n2

Part B In the classical limit, energy levels are expressed as a continuum of states. This can also
be expressed as the number of states n → ∞. The classical limit for the fractional difference in
energy between adjacent eigenvalues is then:

lim
n→∞

2n + 1
n2 = 0

which states that with a continuum of energy levels, the difference between quantized energy
levels vanishes. This corresponds to a classical system where quantization is not observable. �

E&R - Ch. 6, Problem 27

For the n = 1 and n = 3 states in an infinite square well potential, we have the following
eigenfunctions (or wavefunctions):

ψ1(x) = cos
(πx

a

)
ψ3(x) = cos

(
3πx

a

)
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Substituting these equations into the expression given in the problem results in:∫ ∞

−∞
ψ1(x)ψ3(x)dx∫ ∞

−∞
cos

(πx
a

)
cos

(
3πx

a

)
dx

2
a

∫ a/2

−a/2
cos

(πx
a

)
cos

(
3πx

a

)
dx

1
a

∫ a/2

−a/2

[
cos

(
4πx

a

)
− cos

(
2πx

a

)]
dx

If we set 2πx/a = u, then du = 2π/a and the integral becomes:

1
2π

∫ pi

−pi
[cos (2u)− cos (u)] du

1
2π

[∫ pi

−pi
cos (2u) du−

∫ pi

−pi
cos (u) du

]
Evaluating the integrals show that they both equal 0. Therefore,∫ ∞

−∞
ψ1(x)ψ3(x)dx = 0

�

E&R - Ch. 7, Problem 10

While the Schrödinger atom and the Bohr atom describe the electron radius in terms of a quan-
tum number, n, Bohr suggested that electrons have a circular orbital with a definite radius. The
Schrödinger atom is slightly larger since it accounts for the radial probability density for an elec-
tron with a given n (as well as ml and l). This distribution of radii in the Schrödinger atom allows
for electrons to exist with radii around the radius defined by Bohr. �

E&R - Ch. 7, Problem 14

For the location of an orbiting electron, Bohr stated that the radius will be a function of n and
the atomic number, Z:

rBohr =
n2ao

Z
The location of an electron in the Schrödinger atom is a probability distribution with a peak
value located at rBohr, but the expected value for the radius depends on the quantum number l:

rn,l =
n2ao

Z

(
1 +

1
2

[
1− l(l + 1)

n2

])
Taking the case of n = 1, l = 0, we can see that the Schrödinger atom has an expected radius that
is 1.5 times the size of the Bohr radius.
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In terms of orbital angular momentum, Bohr postulated about a 2-D atom. In this atom,
electrons required some angular momentum to maintain their radial path and gave rise to the
following equation:

LBohr = nh̄

This indicates that there will always exist some orbital angular momentum for all quantum num-
ber n. From the Schrödinger atom, orbital angular momentum is a vector that has an x, y and
z component. The z component depends on ml and lies in the direction of the principal atomic
axis. These components are:

Lz = ml h̄

L =
√

l(l + 1)h̄

From this, we can also see that for n = 1, l and ml are 0 and there is no orbital angular momentum
for an electron.

Finally, the total energy in the Bohr and Schrödinger atoms are equal with the exception
that the Schrödinger atom utilizes reduced mass (µ) instead of electron mass to account for the
massive nucleus. �

E&R - Ch. 7, Problem 6

From Example 7-4, we determined that the radius for the ground state (n = 1) of the hydrogen
atom is the Bohr radius. This is defined as:

R =
4πεo h̄2

µq2 = ao

Part A Having defined the stable size of the radius, we can substitute this into the expression
for energy and obtain an energy for the hydrogen atom with n = 1:

E =
h̄2

2µR2 −
q2

4πεoR

=
h̄2

2µ

(
µq2

4πεo h̄2

)2

− q2

4πεo

(
µq2

4πεo h̄2

)
=

µq4

(4πεo)22h̄2 −
µq4

(4πεo)2h̄2

= − µq4

(4πεo)22h̄2

Part B We see that the equation found above is identical to Equation 7-22 when Z = 1 and
n = 1. These values correspond to the ground state of a hydrogen atom. �
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