Semiconductor Lasers

ECE 162C
Lecture #11
Prof. John Bowers

Read Kasip, Chapters 3,4
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Presentations

» Please prepare a 10 minute presentation (max 10 slides) on a topic of
current research.

» The grade is based on your ability to teach your classmates, not how
much material can be covered, or how complex your derivation is.

e Schedule next Monday.
» Look at recent OFC proceedings, Optics Express, PTL to see current
topics.
« Examples:
— Quantum communication
— Single photon transmission/reception
— Multilevel communication
— GalnAsNSD lasers
— Quantum cascade lasers
— Tunable lasers
« Handout original paper and copies of slides (4/page). Christine can
make copies for you.
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Laser Requirements

* Confinement of the optical mode

— Transverse

— Lateral (r1b, strip, gain guided)

— Longitudinal (cleaved facets, rings, DFB, DBR,...)
* Confinement of carriers

— Heterojunction, etched, no confinement (implanted,

diffused,...)

* Confinement of current

— Oxide

— Homojunction

— PN junction

— Semi-insulating
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Laser Requirements

Large Bandwidth

High Modulation
efficiency

- Low Intensity Noise
. Large Temperature
Range

.- Low Distortion

.- Low Reflection
Sensitivity
- Low Chirp
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Single Mode Lasers

« Atleast 3 cm™! of gain difference between
the dominant mode and other modes 1s
required.

— Less gain difference: The laser may lase cw 1n a

single mode, but lases in multiple modes when
modulated.

— More gain difference necessary to achieve 40
dB sidemode suppression under 100%
modulation.
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Bandwidth Limiting Factors

Resonance Frequency

e Current or power limited
Damping

 Spectral hole burning or

« carrier heating limited

Transport

 Diffusion or tunneling limited

Response [dB]

Parasitics

» Capacitance and resistance limited

Microwave Effects

 Microwave loss limited
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Rate Equations

Neglecting the phase of the optical field, the
length dependence of the carrier and photon
densities, and the modal dependence; the
rate equations for the averaged photon and
carrier densities become:

ds Tv,a(N _N”)S— s AN
dt 1+ &S T T

p n

dN _Vga(N—Ntr)S_N
dt i qV 1+ &S T

n
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Rate equations:
Small Signal Approximation

Making the usual small signal
=1, +ie!”

approximation ;
S=S,+sel
N =N, +ne!”

We find the small-signal modulation response of the laser:

_s(f)_s0
Ci(f) i(0) f2— 2+ jff,

H(T)

T. Ikdahil§2€Y. Suematsu, Elecron. Comm. Jap. 51-B, 51 (1968)



Rate Equation:
Intrinsic Frequency Response

The damping frequency is:

degS

27zrp

The resonance frequency is at the geometric mean
of the photon and carrier lifetimes:

f =1

B stim
27\T,7,

J.E. B&FetdXolid State Electronics, vol. 30, no. 1, pp. 1-11(1987)



Rate Equations:
Resonance Frequency

The photon lifetime, typically on the order of 1ps,

IS given by: ,

a Vg(a. + LL ln( Rlle))

Far above threshold, spontaneous emission can
be neglected, and the stimulated electron
lifetime becomes:

stim

V,aS
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Resonance Frequency

From the previous we get the following expression
for the resonance frequency:

1 v,aS 1 |v,anp
f0:2 : — \/ : (I _Ith)
T\ 7, 27T 7,

Note that the peak in modulation response is not at
fo, but at f_, given by:

oo

P 4

J.E. Bowers, Solid State Electronics, vol. 30, no. 1, pp. 1-11(1987)
K.Y. LakiGRdl&2Yariv, IEEE J. Quantum Electron. QE-21, 121(1985)



Modulation Response

The resonance frequency and modulation
bandwidth depends on the output power:

fo — 1 VgaS — D\/ﬁ
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Bandwidth Relations

Depending on the application, different bandwidths
are specified. From the general expression for the
modulation response we find:

25
15 17
fg L i
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J.E. Boweik, BRC Hemenway, A.H. Gnauck and D.P. Wilt, IEEE J. Quantum Electron. QE-22, 833(1986)



Resonance Frequency Limitations

For most lasers the resonance frequency 1s limited by

the current density due to

* Leakage currents due to breakdown of p-n

junctions or semi-insulati

ng layers

* Conduction across the active layer at high current

densities
e Heating (proportional to .

For a given current density |

2R)

higher resonance

frequency is obtained with:

« Higher differential gain
 Shorter cavity length
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Facet Coatings

Can we coat the facets to achieve higher bandwidth?

1 |[Tvgaml IvgamNg o my, 1 1
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HR coating increases modulation bandwidth

A. Maret gb.CElectron. Lett. 26 (17), 1382 (1990)



Bandwidth Limiting Factors

Resonance Frequency
e Current or power limited
Damping

 Spectral hole burning or carrier heating limited

Transport

 Diffusion or tunneling limited

Parasitics

 Capacitance and resistance limited

« Microwave Effects



Limits to Bandwidth: Damping

Modulation bandwidth 1s
limited by damping due
to non-linear gain.

g=g,/(1+eS)

RESPONSE (dB)

Important causes of non-
linear gain are:

- Spectral hole burning - BRI

° C arrler he atlng FREQUENCY (GHz)
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Damping

Damping is described
by the damping factor
K, defined as:

f, =KF;
It can be shown that

K =47z2(rp +fj
a

Damping limits the

maximum bandwidth to:

¢ max _ 272 8.8
3dB K - K
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Bandwidth Limiting Factors

Resonance Frequency
e Current or power limited
Damping
* Spectral hole burning or carrier heating limited

Transport
 Diffusion or tunneling limited

Parasitics

 Capacitance and resistance limited

Microwave Eftects

e Microwave loss limited
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Transport Effects

Important transport processes in separate confinement
heterostructure (SCH) laser

Thermionic
emission, T

>
Cladding l |"

Diffusion, T,

€

SCH

» lunneling, T,

Carrier

capture, T,
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Transport Effects : Rate Equations

When transport effects are included, the rate equations

are modified
dNB: | _NB_|_NW(VW/VSCH)
dt  QVeew 7 Te
dNy, _ NB(VSCH /VW)_ Ny _Vga(NW — N, )S
dt T, T, (1+&S)
5 _Tu,(N-NJS S N,
dt (1+&5) T, T,

ECE 162C
R. Nagarajan et al., Photonics Tech. Lett., vol. 4, no. 2, 121(1992)



Transport Effects:
Modulation Response

The modulation response and damping factor then
become:

@y
(1+ jor, )(a)g 0’ + ja)y)

3)
o2 = X o

O_Tp(l-l-é‘S) T

R(@) =

K= 472'2(Z'p +;(£j
a

ECE 162C



Transport Effects

Exact numerical solution to rate equations compared
to analytical approximation

10

— Exact Solution
----- Analytical Solution

Response (dB)
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Transport Effects
Results from the Model

Severe roll off in the modulation response due to
transport across the SCH region (t,). This roll off
1s independent of:

- Reduction of differential gain

- Gain compression

- Device parasitics

Transport effects causes reduction of effective

differential gain 8

4

Gain compression factor 1s independent of SCH
width
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Transport effects

Carrier transport time between two quantum wells in a
multiple quantum well (MQW) laser
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R. NE&aFajfi2€t al., Appl. Phys. Lett. 59 (15), 1835(1991)



Response (dB)

Transport Effects:

SCH Width = 760 A

SCH width

SCH Width = 3000 A
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Transport Effects : Cavity Length
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Bandwidth Limiting Factors

Resonance Frequency

e Current or power limited

Damping

* Spectral hole burning or carrier heating limited

Transport

 Diffusion or tunneling limited

Parasitics
« Capacitance and resistance limited

Microwave Eftects

e Microwave loss limited
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[Laser Parasitics

Device and package parasitics can cause significant

reduction in modulation response

 Junction capacitance C VRVaVavS

* Bond pad capacitance C,,

* Series resistance R,

e Bond wire inductance L
Example: To achieve 15 GHz bandwidth:

C < 2pF
Cyp <2pF
R <4Q

L <0.3nH
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Parasitics

Parasitic limited 3 dB bandwidth contours

PARASITIC L'MITED 3dB BANDWIDTH CONTOURS
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Laser Impedance

Model for laser impedance,

consisting of bond-wire

inductance, parasitic capacitance —
and series resistance.

Measurements show microwave >
characteristics of two mounted ey
laser structures:
~ aconstricted mesa laser E)‘E;FB‘EM::T —————
- a high power dual-channel e

Cs= 4pF

planar buried heterostructure EXPERIMENT 5
CONSTRICTED
laser (DCPBH) 70 um LoNG
Inductance and resistance are determined
from measurement of forward biased laser
(as shown). Capacitance can be found from

reverse biased measurement
ECE 162C
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Relative Intensity Noise

- Recombination and
generation are stochastic

processes -> variations in 100 ¢ o oo
Output pOWGI' -110 h ﬂ / 320 uv'v
- Relative Intensity Noise: 2 / \)‘Q{fﬁ o
2 - N
(PO z oof
RIN = 52 = L/ b
- _
* RIN spectrum related to -

modulation response: o 2 4 6 8 10
Frequency (GHz)

2
RIN() = 22‘/[6‘1 ;ﬁ H(w)? + 1}
0 R

L.A.Cé{dichodfd S.W. Corzine, “Diode Lasers and Photonic Integrated Circuits”, Wiley and Sons, 1995
D. Tauber et al., Appl. Phys. Lett., vol.62, no.4, 1993, 325-327



RIN

Optical Fiber Communication

Relative intensity noise cause

degradation of Signal-to-Noise

Ratio in analog systems, and
errors in digital systems

Analog signal:

2 1
m” RIN
Digital signal, for BER<10-°

SNR =

RIN < (11.89)*
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L.A.Coldren and S.W. Corzine, “Diode Lasers and Photonic Integrated Circuits”, Wiley and Sons, 1995



Analog Transmission

- High-speed analog
transmission for CATV and
wireless communication

. Issues: qo . mpusis s, 5) :

r ~— ]

. — 20 F \ ) —

- Noise (RIN) Eol O\ —f

— ChlI’p z":s; -40 _ 3rd Order ?r}t?rﬁmodulation_f

— Linearity i ]

: : R ’ ]

- Non-linearity causes Inter- 0t

Modulation Distortion B e 199 200 201 20z 208 208
(IMD) Frequency [MHz]

- Typical system requirement
« IMD3 < -80dBc¢
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J. Wesselman et al., Applied Physics Letters, vol.72, (no.17),. p.2084-6



