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Large Signal Modulationg g

The analysis is based on the rate 
equations:
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For simplicity gain non-linearities are omitted.

With the small-signal approximation no longer 
valid, the equations must be solved numerically
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Large Signal Modulation
Impulse Responsep p

Consider a laser with initial carrier densityConsider a laser with initial carrier density
Ni , excited with a charge impulse at t = 0
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Large Signal Modulation
Impulse Responsep p

The fall-time depends on how far belowThe fall time depends on how far below 
threshold the carrier density can be brought.  
Unless charge is extracted electrically N > Ntr, 
which means:which means:
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This is best case more often τ is on the order of

pspf 1≈>ττ
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This is best case, more often τf is on the order of 
10-20 ps



Large Signal Modulation
Impulse Responsep p

Example:
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Large Signal Modulation
Step Responsep p

Turn on delay
⎛ ⎞ 

Turn-on delay:
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Pulse Generation : Mode-Locking

• Modulation at cavity 
frequency phase locks eque cy p ase oc s
modes

• More modes and better 
phase lock gives 
shorter pulses

• Pulse repetition rate 
determined by cavity 
l h dlength - does not 
depend on bias 
conditions
ECE 162C

conditions

A.E. Siegman, “Lasers”, University Press, 1987



Pulse Generation : Mode-Locking
Resonant modulation of 
roundtrip gain or phase ou dt p ga o p ase
at the cavity frequency
• Active mode-lockingg

– modulation signal 
applied externally

• Passive mode-locking
– Non-linear element in 

cavity providecavity provide 
modulation

• Hybrid mode-locking
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Hybrid mode locking



Pulse Generation : Mode-Locking

Limits to minimum pulsewidth
• Gain bandwidth

– Very wide, potential for pulses <100fs
• Self Phase Modulation

• refractive index depends on carrier density

– Spectral width larger than transform limit
– Generation of chirped pulses

• Dispersion
– Causes broadening of chirped pulses
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Causes broadening of chirped pulses



Passive Mode-Locking in External Cavity

• Pulsewidth : 1-2 ps

• Repetition rate 1-26 GHzRepetition rate 1 26 GHz

• Transform limited pulses

ECE 162CJ. Yu et al., IEEE Photon. Technol. Lett., vol. 7, no. 5, 467 (1995)



Passive Mode-Locking
Monolithic Cavity

• Mode-locking at 1.54 THz
• Monolithic integrated DBR 

llaser
• Total cavity length 1.1mm 

( it 40GH )(cavity resosnace: 40GHz)
• 3 InGaAs QW, λ=1.55µm

M d l ki 40 400• Mode-locking at 40, 400, 
800 GHz and 1.54 THz. 

ECE 162CS. Arahira et al., Optics Letters, vol.19, (no.11):834-6 (1994)
Y. Ogawa, International Workshop on Femtosecond Technology FST’95



Chirp
Modulation of injection current causes not only 
intensity modulation, but also frequency modulation.  
The linewidth enhancement factor α quantifies this
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Chirpp

The linewidth enhancement factor changes withThe linewidth enhancement factor changes with 
wavelength, and can also depend on the structure 
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Chirp

Low chirp laser is a requirement to achieve the fullLow chirp laser is a requirement to achieve the full 
potential of an optical communication system

DCPBH Laser Ridge Waveguide Laser
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P.J. Corvini et al., J. Lightwave Technol., vol. LT-5, 1591 (1987)

DCPBH Laser Ridge Waveguide Laser



Single Longitudinal Mode Lasers

• A technique is needed to filter the gain or 
loss so only one mode reaches threshold.

• Possibilities:
– Short cavity lasers
– Coupled cavity lasers (3 or 4 mirror cavities)
– Grating feedback

• Distributed feedback (DFB)
• Distributed Bragg Reflector (DBR)
• Bulk grating (external cavity)
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• Bulk grating (external cavity)



Single Longitudinal Mode Lasers

• A technique is needed to filter the gain or loss so 
only one mode reaches threshold.

ibili i• Possibilities:
– Short cavity lasers

Coupled cavity lasers (3 or 4 mirror cavities)– Coupled cavity lasers (3 or 4 mirror cavities)
– Grating feedback

• Distributed feedback (DFB)
• Distributed Bragg Reflector (DBR)
• Bulk grating (external cavity)
• Vertical Cavity Surface Emitting Laser (VCSEL)
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VCSEL

DBRDBR
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