Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout

ECE 162C Lecture #15 Prof. John Bowers No class Monday (Memorial Day) No class Wednesday Class Friday, May 30

Types of Photodetectors

- Photoelectric detectors
 - A photon creates an electron-hole pair
 - Quantum detectors (single photon detection possible)
- Photoemission detectors
 - A photon causes the emission on an electron
- Thermal detectors
 - A photon causes a temperature rise
 - Wide spectral range (far IR to UV)
- Weak interaction Detectors
 - No photon absorption

Types of Photodetectors

- Photoelectric detectors
 - Photovoltaic (PIN)
 - Photoconductive
 - Avalanche photodetector (APD)
 - Phototransistor
- Photoemission detectors
 - Vacuum photodiode
 - Photomultiplier
- Thermal detectors
 - Bolometer
 - Thermocouple
 - Pyroelectric
- Weak interaction Detectors
 - Photon drag

Definitions

- Quantum efficiency η : Ratio of the number of electrons collected to the number of photons incident.
- Responsivity: current out divided by optical power incident

$$R_{d} = \eta \frac{e}{hv} = \eta \lambda \frac{e}{hc} = \frac{\eta \lambda}{1.24W / A}$$

Fig. 5.2.5 Spectral sensitivity $\sigma(\lambda)$ of typical semiconductor photodiodes in several materials and structures from UV to NIR (T=300 K). The lines of equal quantum efficiency η are also indicated.

Absorption

Direct gap in semiconductors: $\alpha \sim 1/\mu m$ Indirect gap in semiconductors a $\sim 0.01/\mu m$

 $I(z) = I_0 e^{-\alpha z}$

Figure 5-2.2 Wavelength dependence of the absorption coefficient α and of the absorption length L_{abs} for several semiconductors (data for T=300 K)

 Photoelectric detectors 	Gain?
– Photovoltaic (PIN)	No
 Photoconductive 	Yes
– Avalanche photodetector (APD)	Yes
– Phototransistor	Yes

р	
i	
n	

Photodetector Classifications

- Illumination
 - Surface normal
 - Top illuminated
 - Substrate illuminated
 - Surface perpendicular
 - Edge absorbing detectors
 - Waveguide detectors
 - Traveling wave photodetectors
- Contacts
 - Metal (MSM photodetectors)
 - Semiconductor

Figure 5-2.7 Current/voltage characteristics of a silicon photodiode (for small signals and λ =900nm). Insert shows the dependence of junction capacitance and series resistance upon V (note the scale change for V<0).

Fig. 2. Schematic diagram of a p-i-n detector and the electric field and electron and hole velocities as a function of position in a p-i-n detector.

PIN Impulse Response?

PIN Impulse Response? $j = \frac{v_e e \sigma_e + v_h e \sigma_h}{L}$

Displacement current flows. That is what is measured in an external circuit, not conduction current.

Fig. 3. Impulse response of a p-i-n detector for different values of α : $\alpha = 0.68 \ \mu m^{-1}$ ($\lambda = 1.55 \ \mu m$), $\alpha = 1.16 \ \mu m^{-1}$ ($\lambda = 1.36 \ \mu m$), $\alpha = 2.15 \ \mu m^{-1}$ ($\lambda = 1.06 \ \mu m$), ($v_p = 4.8 \times 10^6 \ m/s$, $v_n = 6.5 \times 10^6 \ m/s$, corresponding to GaInAs.

Fig. 4. GaInAs p-i-n detector bandwidth dependence on depletion-layer thickness for 5 and 50 μ m diameters. ($\alpha = 1.16 \mu$ m (1.3- μ m wave-length) $v_n = 6.5 \times 10^6 \text{ cm/s}, v_p = 4.8 \times 10^6 \text{ cm/s}.$)