Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout

ECE 162C Lecture #16 Prof. John Bowers Final: Thursday, June 12 12-3

Final

- Final: Tuesday, June 10 12-3
- 1 two sided 8.5 x 11" crib sheet
- Material:
 - Kasip, chapters 1-6
 - Lecture notes
- Problems:
 - Photodetectors+ Photovoltaics
 - VCSEL
 - Lasers
 - Optical fibers
- Review session: Friday, June 6 at 10-12 at ESB 1001

Types of Photodetectors

- Photoelectric detectors
 - Photovoltaic (PIN)
 - Photoconductive
 - Avalanche photodetector (APD)
 - Phototransistor
- Photoemission detectors
 - Vacuum photodiode
 - Photomultiplier
- Thermal detectors
 - Bolometer
 - Thermocouple
 - Pyroelectric
- Weak interaction Detectors
 - Photon drag

Definitions

- Quantum efficiency η : Ratio of the number of electrons collected to the number of photons incident.
- Responsivity: current out divided by optical power incident

$$R_{d} = \eta \frac{e}{hv} = \eta \lambda \frac{e}{hc} = \frac{\eta \lambda}{1.24W / A}$$

Fig. 5.2.5 Spectral sensitivity $\sigma(\lambda)$ of typical semiconductor photodiodes in several materials and structures from UV to NIR (T=300 K). The lines of equal quantum efficiency η are also indicated.

Absorption

Direct gap in semiconductors: $\alpha \sim 1/\mu m$ Indirect gap in semiconductors a $\sim 0.01/\mu m$

 $I(z) = I_0 e^{-\alpha z}$

Figure 5-2.2 Wavelength dependence of the absorption coefficient α and of the absorption length L_{abs} for several semiconductors (data for T=300 K)

 Photoelectric detectors 	Gain?
– Photovoltaic (PIN)	No
 Photoconductive 	Yes
– Avalanche photodetector (APD)	Yes
– Phototransistor	Yes

р	
i	
n	

Photodetector Classifications

- Illumination
 - Surface normal
 - Top illuminated
 - Substrate illuminated
 - Surface perpendicular
 - Edge absorbing detectors
 - Waveguide detectors
 - Traveling wave photodetectors
- Contacts
 - Metal (MSM photodetectors)
 - Semiconductor

Figure 5-2.7 Current/voltage characteristics of a silicon photodiode (for small signals and λ =900nm). Insert shows the dependence of junction capacitance and series resistance upon V (note the scale change for V<0).

Fig. 2. Schematic diagram of a p-i-n detector and the electric field and electron and hole velocities as a function of position in a p-i-n detector.

PIN Impulse Response?

PIN Impulse Response? $j = \frac{v_e e \sigma_e + v_h e \sigma_h}{L}$

Displacement current flows. That is what is measured in an external circuit, not conduction current.

Fig. 3. Impulse response of a p-i-n detector for different values of α : $\alpha = 0.68 \ \mu m^{-1}$ ($\lambda = 1.55 \ \mu m$), $\alpha = 1.16 \ \mu m^{-1}$ ($\lambda = 1.36 \ \mu m$), $\alpha = 2.15 \ \mu m^{-1}$ ($\lambda = 1.06 \ \mu m$), ($v_p = 4.8 \times 10^6 \ m/s$, $v_n = 6.5 \times 10^6 \ m/s$, corresponding to GaInAs.

Fig. 4. GaInAs p-i-n detector bandwidth dependence on depletion-layer thickness for 5 and 50 μ m diameters. ($\alpha = 1.16 \mu$ m (1.3- μ m wave-length) $v_n = 6.5 \times 10^6 \text{ cm/s}, v_p = 4.8 \times 10^6 \text{ cm/s}.$)

Fig. 5. Contours of constant 3-dB bandwidth in the detector-area, depletion-layer-thickness plane. ($\alpha = 1.16 \ \mu m^{-1}$, (1.3- μm wavelength), $v_n = 6.5 \times 10^6 \ cm/s$, $v_p = 4.8 \times 10^6 \ cm/s$, $\epsilon = 14.1$.)

Avalanche Photodiodes (APDs)

- $\Box \alpha$ Rate at which electrons multiply
- $\square \beta$ Rate at which holes multiply
- A large ratio of α/β or β/α results in a large gain bandwidth product and low noise amplification. True for Si
- Most III-Vs have a small ratio, and limited gain bandwidth product. The noise is larger, but still lower than a PIN receiver.

The Avalanche Multiplication Process

Figure 5-4.3 The dc gain M of the avalanche photodiode (for electron injection at x=0) as a function of the number of multiplications α L and with the ionization ratio α/β as a parameter

SAM APDS: Need for Separate Absorption and Multiplication Regions Small bandgap avalanche regions tend to have

Electric Field Simulation for SHIP

SHIP Detector 3-dB Bandwidth versus gain

Staircase APD: Use of bandgap engineering to increase the ratio of ionization coefficients.

Figure 5-4.10 (a) Sawtooth APD in GaAlAs: distribution of the potential energy with no bias (above) and with reverse bias (below); (b) superlattice APD

Sensitivity and Noise

- Responsivity: R=I/P (current/input power)
- NEP (noise equivalent power)
 - NEP=g/R
 - NEP is the input power that gives unity signal to noise ratio
 - Smaller NEP is better

Detectivity

- Detectivity: D=1/NEP
- Larger detectivity is better
- Noise is proportional to bandwidth and detector area.
- A better metric is to normalize out bandwidth and area: D*
- Analysis below is for a dark current limited noise current.

$$I_n^2 = 2eI_d B = 2eJ_d AB$$
$$NEP = \frac{I_n}{R} = \frac{\sqrt{2eJ_d AB}}{R}$$
$$D^* = D\sqrt{AB} = \frac{\sqrt{AB}}{NEP} = \frac{R}{\sqrt{2eJ_d}}$$

D**

- Detectors with a narrower field of view have lower noise.
- Define field of view by the numerical aperature NA
- A better metric compensates for this
- D** (D double star)

$$D^{**} = D^* NA = \frac{NA\sqrt{AB}}{NEP}$$