The Wave Equation in Birefringent Media,
Modes In Optical Fiber

Read: Kasap, Chapter 1,2
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Law of the Photon

Data rate doubles every 16 months
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Transmission will be Optical
What do you need to know?

* Modes In optical fibers (wave equation ...)

* Modes in optical waveguides (lasers,
modulators, ...wave equation, birefringence)

 Lasers (gain, absorption, lasing,...)
* Modulators, Photodetectors, Amplifiers
« Multiplexers, Dispersion compensation
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Notation

 MKS units
« Lower case for time varying quantities

« Capitals for the amplitudes of time
varying guantities

e Complex guantities used to represent
amplitude and phase:

a(t) = Re[Ae']

 Later lectures, and Kasip:
e E(x,y,z,0)=Re [E(X,y,z) e'“]
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Maxwell’s Equations

Vxﬁ:i+@
ot
V><§:—§E
ot
Ved=0
Veb=0

where e and h are the electric and magnetic field vectors
d and b are the electric and magnetic displacement vectors
No free charge.
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Constitutive Relations

—
—

d=¢,€+p
k_)):/Uo(ﬁ‘km)

p and m are the electric and magnetic polarizations of the medium
g, and p, are the electric and magnetic permeabilities of vacuum
e and h are the electric and magnetic field vectors

d and b are the electric and magnetic displacement vectors
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Electric Susceptibility y (Isotropic)

Isotropic Media: y is a complex number

P =g,k

The real part determines the index (velocity) and the
Imaginary part determines the gain or absorption.

Isotropic media: Vacuum, gasses, glasses (optical fibers)
Anisotropic media: Semiconductors, crystalline materials.
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Electric Susceptibility v (Anisotropic media)

Anisotropic Media: y Is a complex second rank tensor

5:(90)?@
DizgoZ ZiE;
K _gO(ZxxE +nyEy+szE)

One can always choose a coordinate system such that off
axis elements are zero. These are the principal dielectric
axes of the crystal. We will only use the principal

coordinate system.
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Principal Axes

D, E and P are not parallel in general. D and E are related by
the electric permeability tensor €

B =g E+P
B = oF

Principal axes can always be chosen such that D and E are parallel
and the off diagonal elements of ¢ are zero.

&1 = &1+ 1)
Eyp = Eo(1+ X20)
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Wave Propagation in Lossless, Isotropic
Media

o Lossless: 6=0, y Is real, € Is real.
* |sotropic: y, € are scalors (not tensors).
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Wave Equation
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Wave Equation
e(x,V,z,t)=Re[E(X,y,2z)e'"]
V2E + @®ueE =0
V’E+k’E =0
where

k:a)\/ﬁ:a)n/c

c=1/./ s,

n=| He
Ho&
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Step Index Circular Waveguide
(lossless, isotropic)

«Simplest type of fiber ﬁ U —
*(Most fiber these days is far 2a
more complex) H

Cylindrical symmetry
n(r)

ny

)

Figure 3-1 Structure and index profile of a step-index circular ws
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Step Index Circular Waveguide
(lossless, isotropic)

«Simplest type of fiber

(Most fiber these days is far 2

more complex) H

Cylindrical symmetry

*EXxpress Laplacian operator e

In cylindrical coordinates nl
ve_ 0" 10 10 & -

= 4+=—+ +
or’ ror r?og° o1

o ———————— gl

«Separate variables

Figure 3-1 Structure and index profile of a step-index circular ws

E, =y (NO(g)e ™
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Separable Solutions

82 18 1 )
+ (k E =0
a? ror 28¢ (=40

E, =y (r)®(g)e"
O(g)=e""? where 1=012...
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Separable Solutions

82 o 1 0°
or? %ar r’ 0¢° # (k= AIE, =0

E, =y (r)@(g)e" "™
O(g)=e™ where 1=012..

0 10 g2 o I°
[ty (= )]w 0

Bessel differential equatlon

=cJ,(hr)+c,Y,(hr) k*-p°=h*>0

=c,l,(gr)+c, K, (qr) k*— —q° >0
J Bessel nctlon of the first kind

Y Bessel function of the second kind
e 1620 | Modified Bessel function of the first kind
K Modified Bessel function of the second kind



Boundary Conditions

Decaying fields for r>a 2
0 ~
2 52 L2 p2 22
q°=p"-k"=4"-nk, o
k,=wlcC

Figure 3-1 Structure and index profile of a step-index circular waveguide.

For fields in the core r<a, we need finite fields
(which eliminates Y and K which go to infinity as r approaches O.

ECE 162C



ha

Figure 3-2 Graphical determination of the propagation constants of TE modes (I = 0) for a

step-index waveguide.
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1 (not TE or TM, but EH)

» ha

_Flgure 3-3 Graphical determination of the propagation constants of / = 1 EH modes for a

step-index fiber.
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Figure 3-4 Graphical determination of the propagation constants of the / = 1 HE modes for

a step-index dielectric waveguide.
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V parameter

Blk. —
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Figure 3-5 Normalized propagation constant as a function of V parameter for a few of the
lowest-order modes of a step-index waveguide [4].
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For n1-n2<<nl, LP approximation is valid.
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Figure 3-6 Normalized propagation constant b as function of normalized frequency V for the
guided modes of the optical fiber, b = (B/k, — n,)/(n, — n.,). (After Reference {51.) ;

Single mode cut off: V=2.405
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Degenerate Modes LP,,
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Figure 3-8 Sketch of the fiber cross section and the four possible distributions of |
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Modes as a function of V parameter
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Figure 3-9 Fractional power contained in the cladding as a function of the frequency param-
eter V. (After Reference [5].)

At cutoff, all the power is in the cladding.
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Dispersion
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r=DLo

D iIs dispersion parameter
L is the propagation length
o IS the spectral width
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Dispersion (sum of material and waveguide dispersion)
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Figure 3-10 Group velocity disperion of (a) dispersion-unshifted 1.3 um fiber and (b) dis-
persion- flattened and dispersion-shifted fibers. (After Reference [1].)
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Loss in early optical fibers

(now the O-H peaks around 1.4 um are small)

Loss (dB/km)
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Figure 3-19 Observed loss spectrum of a germanosilicate single-mode fiber. Estimated loss

spectra for various intrinsic materials effects and waveguide imperfections are also shown.
(From Reference [20].)
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Summary

 Single mode condition required for high
performance

 Multimode fiber used for low cost
 Dispersion is designable.

1.3 micron: zero of dispersion

e 1.55 micron: minimum loss

o Zero dispersion iIs not good because of
nonlinearity
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Homework #1

* Read Kasap, Chapter 1

e Problems 1.2, 1.3, 1.7,1.8 due Wednesday,
April 9
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