The Wave Equation in Birefringent Media, Modes in Optical Fiber

Read: Kasap, Chapter 2 Homework#1 due Wednesday

ECE 162C Lecture #3 Prof. John Bowers

Maxwell's Equations

$$\nabla \times \vec{h} = i + \frac{\partial \vec{d}}{\partial t}$$
$$\nabla \times \vec{e} = -\frac{\partial \vec{b}}{\partial t}$$
$$\nabla \bullet \vec{d} = 0$$
$$\nabla \bullet \vec{b} = 0$$

where e and h are the electric and magnetic field vectors d and b are the electric and magnetic displacement vectors No free charge. **Constitutive Relations**

$$\vec{d} = \varepsilon_0 \vec{e} + \vec{p}$$
$$\vec{b} = \mu_0 (\vec{h} + \vec{m})$$

p and m are the electric and magnetic polarizations of the medium ε_0 and μ_0 are the electric and magnetic permeabilities of vacuum e and h are the electric and magnetic field vectors d and b are the electric and magnetic displacement vectors

Electric Susceptibility χ (Anisotropic media)

Anisotropic Media: χ is a complex second rank tensor

$$\vec{P} = \varepsilon_0 \vec{\chi} \vec{E}$$

$$P_i = \varepsilon_0 \sum_{ij} \chi_{ij} E_j$$

$$P_x = \varepsilon_0 (\chi_{xx} E_x + \chi_{xy} E_y + \chi_{xz} E_z)$$

One can always choose a coordinate system such that off axis elements are zero. These are the principal dielectric axes of the crystal. We will only use the principal coordinate system.

$$P_{x} = \varepsilon_{0} \chi_{11} E_{x}$$
$$P_{y} = \varepsilon_{0} \chi_{22} E_{y}$$
$$P_{z} = \varepsilon_{0} \chi_{33} E_{z}$$

Principal Axes

D, E and P are not parallel in general. D and E are related by the electric permeability tensor ε

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$
$$\vec{D} = \varepsilon \vec{E}$$

Principal axes can always be chosen such that D and E are parallel and the off diagonal elements of ε are zero.

$$\varepsilon_{11} = \varepsilon_0 (1 + \chi_{11})$$
$$\varepsilon_{22} = \varepsilon_0 (1 + \chi_{22})$$
$$\varepsilon_{33} = \varepsilon_0 (1 + \chi_{33})$$

Wave Propagation in Lossless, Isotropic Media

- Lossless: $\sigma=0, \chi$ is real, ε is real.
- Isotropic: χ , ε are scalors (not tensors).

$$e(x, y, z, t) = \operatorname{Re}[E(x, y, z)e^{i\omega t}]$$

$$\nabla^{2}\vec{E} + \omega^{2}\mu\varepsilon\vec{E} = 0$$

$$\nabla^{2}\vec{E} + k^{2}\vec{E} = 0$$
where

$$k = \omega \sqrt{\mu \varepsilon} = \omega n / c$$
$$c = 1 / \sqrt{\mu_0 \varepsilon_0}$$
$$n = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}}$$

Step Index Circular Waveguide (lossless, isotropic)

•Separate variables

$$E_r = \psi(r) \Phi(\phi) e^{i(\omega t - \beta z)}$$

Figure 3-1 Structure and index profile of a step-index circular wa

Separable Solutions

$$\begin{bmatrix} \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + (k^2 - \beta^2) \end{bmatrix} E_z = 0$$

$$E_r = \psi(r) \Phi(\phi) e^{i(\omega t - \beta z)}$$

$$\Phi(\phi) = e^{\pm i l \phi} \quad where \quad l = 0, 1, 2...$$

$$\begin{bmatrix} \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + (k^2 - \beta^2 - \frac{l^2}{r^2}) \end{bmatrix} \psi = 0$$

Bessel differential equation

$$\psi = c_1 J_l(hr) + c_2 Y_l(hr)$$
 $k^2 - \beta^2 = h^2 > 0$

 $\psi = c_1 I_1(qr) + c_2 K_1(qr) \qquad k^2 - \beta^2 = -q^2 > 0$ J Bessel function of the first kind Y Bessel function of the second kind I Modified Bessel function of the first kind K Modified Bessel function of the second kind

Separable Solutions

Bessel differential equation $\psi = c_1 J_l(hr) + c_2 Y_l(hr) \quad k^2 - \beta^2 = h^2 > 0$ $\psi = c_1 I_l(qr) + c_2 K_l(qr) \quad k^2 - \beta^2 = -q^2 > 0$

J Bessel function of the first kindY Bessel function of the second kindI Modified Bessel function of the first kindK Modified Bessel function of the second kind

Boundary Conditions

For fields in the core r<a, we need finite fields (which eliminates Y and K which go to infinity as r approaches 0.

Fiber Modes

- Mode: A particular electromagnetic field configuration. For a given electromagnetic problem, many field distributions exist that satisfy the wave equation, Maxwell's equations, and the boundary conditions.
- The particular distribution does not change with propagation. (Only phase changes).
- Each β_{mn} corresponds to a mode.

Mode Names

Name	Field Components	Notation
transverse-electric	E _z =0	TE _{0n}
transverse-magnetic	H _z =0	TM _{0n}
hybrid	H _z dominates	HE _{mn}
	E _z dominates	EH _{mn}
linearly polarized	E_z and H_z close to zero	LP _{mn}

TE (m=0) Modes

EC

EH (m=1)

Figure 3-3 Graphical determination of the propagation constants of l = 1 EH modes for a step-index fiber.

HE (m=1)

Figure 3-4 Graphical determination of the propagation constants of the l = 1 HE modes for a step-index dielectric waveguide.

V parameter

Figure 3-5 Normalized propagation constant as a function of V parameter for a few of the lowest-order modes of a step-index waveguide [4].

Figure 3-6 Normalized propagation constant b as function of normalized frequency V for the guided modes of the optical fiber, $b = (\beta/k_c - n_2)/(n_1 - n_2)$. (After Reference [5].)

Single mode cut off: V=2.405

Figure 3-9 Fractional power contained in the cladding as a function of the frequency parameter V. (After Reference [5].)

At cutoff, all the power is in the cladding.

Degenerate Modes LP₁₁

Common fiber types

- Glass fiber:
 - Step index: $n_1 = 1.48 \quad n_2 = 1.46$
 - Ge doped core
 - Depressed cladding (Fluorine doped)
 - Amplifier (Er doped)
 - Graded index fiber: profile designed so all modes travel at the same velocity
 - Polarization preserving fiber (strain or ellipticity to break the degeneracy between the two polarization modes.
 - Dispersion management:
 - Dispersion shifted fiber
 - Dispersion flattened fiber
- Plastic fiber (low cost, automotive, stereo, etc.) Polymethyl methacrylate core

- Step index fiber: Standard for single mode (small core size 8 micron)
- Graded index fiber: Designed so all multimodes travel at the same velocity.

Two primary limits to transmission

- Loss: Loss budget for loss limited transmission
- Dispersion: Dispersion budget for dispersion limited transmission.

Comparison to cable

FIGURE 3-11

A comparison of the attenuation as a function of frequency or data rate of various coaxial cables and several types of high-bandwidth optical fibers.

Е

Loss in early optical fibers (now the O-H peaks around 1.4 µm are small)

Figure 3-19 Observed loss spectrum of a germanosilicate single-mode fiber. Estimated loss spectra for various intrinsic materials effects and waveguide imperfections are also shown. (From Reference [20].)

Two primary limits to transmission

- Loss: Loss budget for loss limited transmission
- Dispersion: Dispersion budget for dispersion limited transmission.

Loss Budget

- p_{trans}=transmitter power
- p_{rec}=sensitivity of receiver

$$p_{rec} = p_{trans} e^{-\alpha L}$$

• Take 10 log of each side and express in dBm

• P_{trans}, P_{rec}

$$P_{rec} = P_{trans} - \alpha L$$

$$L_{\max} = \frac{P_{trans} - P_{rec}}{\alpha}$$

- Example:
- $P_{trans} = 10 \text{ dBm}$
- P_{rec} =-20 dBm
- $L_{max}^{ECE \ 162C} = 30 \ dB/0.2 \ dB/km = 150 \ km$

Dispersion

- Multimode– different modes have different β
- Intramodal (i.e. group-velocity dispersion)
 - Material dispersion silica refractive index is a function of wavelength
 - Waveguide dispersion V parameter is a function of wavelength
- Polarization-Mode Dispersion bifrefringence induced by perturbations

Multimode Dispersion

• For step index multimode fibers, the fiber bandwidth (in MHz km) is given by

$$B < \frac{n_2}{n_1^2} \frac{c}{L\Delta}$$

• For graded index fibers, the fiber bandwidth in MHz km is given by

$$B < \frac{8c}{n_1 L \Delta^2}$$

- Step index fiber: Standard for single mode (small core size 8 micron)
- Graded index fiber: Designed so all multimodes travel at the same velocity.

- The index of the mode is dependent on the wavelength (i.e. the fiber is dispersive).
- Two components: material dispersion and waveguide dispersion.
- These contribute to phase index.
- The group index is given by

Material Dispersion

• Refractive index change of silica with optical frequency is modeled with the Sellmeier Equation:

$$n^{2}(\omega) = 1 + \sum_{j=1}^{M} \frac{B_{j}\omega_{j}}{\omega_{j}^{2} - \omega^{2}}$$

 B_j is the strength of medium resonance j of the material ω_i is the frequency of medium resonance j

Material Dispersion

- Material dispersion D_M is the slope of the n_g vs. λ (times 1/c)
- Therefore, looking at the figure we see that the slope hits zero at some wavelength zero-dispersion wavelength

Figure 2.8: Variation of refractive index n and group index n_g with wavelength for fused silica.

Waveguide Dispersion

- Waveguide dispersion D_W comes from the first and second derivatives of (Vb) with respect to V
- For the wavelength range considered, D_W is always negative.
- Therefore, sum of waveguide and material dispersion shifts zero-dispersion wavelength to a slightly longer wavelength

Waveguide dispersion

FIGURE 3-14

The group delay arising from waveguide dispersion as a function of the V number for a step-index optical fiber. The curve numbers *jm* designate the LP_{jm} modes. (Reproduced with permission from Gloge.³⁷)

Dispersion

$\tau = DL\sigma$ $\Delta T = DL\Delta\lambda$

D is dispersion parameter L is the propagation length σ is the spectral width

Figure 3-10 Group velocity disperion of (a) dispersion-unshifted 1.3 μ m fiber and (b) dispersion-flattened and dispersion-shifted fibers. (After Reference [1].)

Dispersion Summary

- Single mode condition required for high performance
- Multimode fiber used for low cost
- Dispersion is designable.
- 1.3 micron: zero of dispersion
- 1.55 micron: minimum loss
- Zero dispersion is not good because of nonlinearities