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Maxwell’s Equations
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where e and h are the electric and magnetic field vectors
d and b are the electric and magnetic displacement vectors
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d and b are the electric and magnetic displacement vectors
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Constitutive Relations
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d th l t i d ti l i ti f th dip and m are the electric and magnetic polarizations of the medium
ε0 and μ0 are the electric and magnetic permeabilities of vacuum
e and h are the electric and magnetic field vectors
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d and b are the electric and magnetic displacement vectors



Electric Susceptibility χ (Anisotropic media)
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Anisotropic Media: χ is a complex second rank tensor
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O l h di t t h th t ffOne can always choose a coordinate system such that off 
axis elements are zero.  These are the principal dielectric 
axes of the crystal.  We will only use the principal 
coordinate system.
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Principal Axes

rrr
D, E and P are not parallel in general.  D and E are related by 
the electric permeability tensor ε
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Principal axes can always be chosen such that D and E are parallel
and the off diagonal elements of ε are zero.
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Wave Propagation in Lossless, Isotropic 
Media

• Lossless: σ=0, χ is real, ε is real.
Isotropic: χ ε are scalors (not tensors)• Isotropic: χ, ε are scalors (not tensors).
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Wave Equation
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Step Index Circular Waveguide
(lossless, isotropic)

•Simplest type of fiber
(M t fib th d i f•(Most fiber these days is far 

more complex)
•Cylindrical symmetry
•Express Laplacian operator 
in cylindrical coordinates
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Separable Solutions
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J  Bessel function of the first kind
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Y Bessel function of the second kind
I  Modified Bessel function of the first kind
K Modified Bessel function of the second kind



Separable Solutions
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Boundary Conditions
Decaying fields for r>a
q>0q 0
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For fields in the core r<a, we need finite fields
(which eliminates Y and K which go to infinity as r approaches 0.(which eliminates Y and K which go to infinity as r approaches 0.
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Fiber Modes

• Mode: A particular electromagnetic field p g
configuration.  For a given electromagnetic 
problem, many field distributions exist that p y
satisfy the wave equation, Maxwell’s 
equations, and the boundary conditions. q y

• The particular distribution does not change 
with propagation. (Only phase changes).with propagation.  (Only phase changes).

• Each βmn corresponds to a mode.
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Mode Names

Name Field Components Notationa e e d Co po e ts otat o
transverse-electric Ez=0 TE0n

transverse-magnetic Hz=0 TM0n

h b id H d i HEhybrid Hz dominates
Ez dominates

HEmn

EHmn

linearly polarized Ez and Hz close to zero LPmn
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TE (m=0) Modes
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EH (m=1)
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HE (m=1)
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V parameter

n: effective index
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For n1-n2<<n1, LP approximation is valid.

ECE 162C Single mode cut off: V=2.405



Modes as a function of V parameter
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At cutoff, all the power is in the cladding.



Degenerate Modes LP11
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Common fiber types
• Glass fiber:

– Step index: n1=1.48  n2=1.46
• Ge doped core
• Depressed cladding (Fluorine doped)
• Amplifier (Er doped)p ( p )

– Graded index fiber: profile designed so all modes travel at the same 
velocity 

– Polarization preserving fiber (strain or ellipticity to break thePolarization preserving fiber (strain or ellipticity to break the 
degeneracy between the two polarization modes.

– Dispersion management: 
• Dispersion shifted fiber• Dispersion shifted fiber
• Dispersion flattened fiber

• Plastic fiber (low cost, automotive, stereo, etc.) Polymethyl methacrylate 
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Fiber-Optic Waveguides

• Step index fiber: Standard for single mode (small core size – 8 micron)
• Graded index fiber: Designed so all multimodes travel at the same velocity.
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Two primary limits to 
transmissiontransmission

• Loss: Loss budget for loss limited transmissionLoss: Loss budget for loss limited transmission
• Dispersion: Dispersion budget for dispersion 

limited transmissionlimited transmission.
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Comparison to cable
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Loss in early optical fibers
(now the O-H peaks around 1.4 μm are small)

4/ λα CR =
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Two primary limits to 
transmissiontransmission

• Loss: Loss budget for loss limited transmissionLoss: Loss budget for loss limited transmission
• Dispersion: Dispersion budget for dispersion 

limited transmissionlimited transmission.
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Loss Budget
• ptrans=transmitter power
• prec=sensitivity of receiver

• Take 10 log of each side and express in dBm
P P

αL
transrec epp = −

• Ptrans, Prec

αtransrec LPP −=

rectrans PPL −
=max

• Example: 
P 10 dB

αmax
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• Ptrans=10 dBm
• Prec=-20 dBm
• Lmax=30 dB/0.2 dB/km=150 km



Dispersion

• Multimode– different modes have different β
• Intramodal (i.e. group-velocity dispersion)( g p y p )

– Material dispersion – silica refractive index is a function of 
wavelength

– Waveguide dispersion – V parameter is a function of 
wavelength

• Polarization-Mode Dispersion – bifrefringence induced byPolarization-Mode Dispersion bifrefringence induced by 
perturbations

ECE 162C p.40



Multimode Dispersion
• For step index multimode fibers, the fiber bandwidth (in MHz km) is given by
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Fiber-Optic Waveguides

• Step index fiber: Standard for single mode (small core size – 8 micron)
• Graded index fiber: Designed so all multimodes travel at the same velocity.
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Group-Velocity Dispersion

• The index of the mode is dependent on the wavelength (i.e. the fiber is 
dispersive).

• Two components: material dispersion and waveguide dispersion• Two components: material dispersion and waveguide dispersion.
• These contribute to phase index.
• The group index is given by 
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Material Dispersion
• Refractive index change of silica with optical frequency is 

modeled with the Sellmeier Equation:
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Bj is the strength of medium resonance j of the material
ωj is the frequency of medium resonance j
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Material Dispersion
• Material dispersion DM is the slope of the ng vs. λ (times 1/c)
• Therefore, looking at the figure we see that the slope hits zero at 

l th di i l thsome wavelength – zero-dispersion wavelength

λzD ~ 1.27-1.29 μm
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Waveguide Dispersion

• Waveguide dispersion DW comes from 
the first and second derivatives of (Vb) 
with respect to V

• For the wavelength range considered, 
DW is always negative.

• Therefore, sum of waveguide and e e o e, su o wavegu de a d
material dispersion shifts zero-dispersion 
wavelength to a slightly longer 
wavelength
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Waveguide dispersion
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Dispersion

στ DL=
λΔ=Δ DLT

D is dispersion parameter
L is the propagation length
σ is the spectral width
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Dispersion (sum of material and waveguide dispersion)
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Dispersion Summary

• Single mode condition required for high g q g
performance

• Multimode fiber used for low cost
• Dispersion is designable.
• 1 3 micron: zero of dispersion1.3 micron: zero of dispersion
• 1.55 micron: minimum loss
• Zero dispersion is not good because of• Zero dispersion is not good because of 

nonlinearities
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