The Wave Equationin Birefringent Media,
Modes 1n Optical Fiber

Read: Kasap, Chapter 2
Homework#1 due Wednesday
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Maxwell’s Equations
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where € and h are the electric and magnetic field vectors
d and b are the electric and magnetic displacement vectors
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Constitutive Relations

—
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d=¢,€+p
Bzﬂo(ﬁ+m)

p and m are the electric and magnetic polarizations of the medium

g, and L, are the electric and magnetic permeabilities of vacuum
¢ and h are the electric and magnetic field vectors

d and b are the electric and magnetic displacement vectors

ECE 162C



Electric Susceptibility ¥ (Anisotropic media)

Anisotropic Media: y 1s a complex second rank tensor
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One can always choose a coordinate system such that off
axis elements are zero. These are the principal dielectric
axes of the crystal. We will only use the principal

coordinate system.

D
= Eo X Ey
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Principal Axes

D, E and P are not parallel in general. D and E are related by
the electric permeability tensor ¢

B g E+P
B = oF

Principal axes can always be chosen such that D and E are parallel
and the off diagonal elements of € are zero.

&, =¢&,(1+ xpy)
&y =1+ 15)
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Wave Propagation 1n Lossless, Isotropic
Media

e Lossless: =0, y 1s real, € is real.

* Isotropic: y, € are scalors (not tensors).
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Wave Equation
e(X,V,z,t)=Re[E(X,V,z)e'"]
VE + a)z,uglg =0
VE+k*E=0
where

k:a)\/ﬁ:a)n/c

c=1/,/148,

n= |-
Hy&
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Step Index Circular Waveguide
(lossless, 1sotropic)

- 2b
*Simplest type of fiber
*(Most fiber these days is far 2
more complex) H
*Cylindrical symmetry
*Express Laplacian operator ne)
in cylindrical coordinates nl

)
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*Separate variables

Figure 3-1 Structure and index profile of a step-index circular ws

E, = p(ND(g)e
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Separable Solutions

»? 18 18
e +(k*=B°)E, =
[ar2 ror r?o¢g’ K=,

E, =w(Nd(g)e" "
O(g)=e"’ where 1=0,12...

O 10 g0, 1P
A Ly 4 )]

Bessel differential equatlon

=c,J,(hr)+cY,(hr) k*-p°=h*>>0

= I, (ar)+c,K,(qr) kz_ﬂz :,_q2>0 ,
Bessel function of the first kind

Y Bessel function of the second kind
I Modified Bessel function of the first kind
K Modified Bessel function of the second kind
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Separable Solutions

Bessel differential equation
v =cJ,(hr)+c,Y,(hr) k’-=p°=h*>>0
y =cl,(anN+c,K @) k=g =-¢">0

J Bessel function of the first kind

Y Bessel function of the second kind
I Modified Bessel function of the first kind
K Modified Bessel function of the second kind
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Boundary Conditions

Decaying fields for r>a
q>0

o’ =B -k> =4 -n’k,’
k,=w/cC

2b

e

n(r)

r

y
I n

Figure 3-1 Structure and index profile of a step-index circular waveguide.

For fields 1n the core r<a, we need finite fields
(which eliminates Y and K which go to infinity as r approaches 0.
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Fiber Modes

* Mode: A particular electromagnetic field
configuration. For a given electromagnetic
problem, many field distributions exist that
satisfy the wave equation, Maxwell’s
equations, and the boundary conditions.

» The particular distribution does not change
with propagation. (Only phase changes).

» Each 3, corresponds to a mode.
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Mode Names

Name Field Components Notation
transverse-electric E,=0 TE,,
transverse-magnetic H,=0 TM,
hybrid H, dominates HE,,,
E, dominates EH.,
linearly polarized E, and H, close to zero LP .,
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TE (m=0) Modes

ha

Figure 3-2 Graphical determination of the propagation constants of TE modes (I = 0) for a

step-index waveguide.
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EH (m=1)

+ ha

_Flguro 3-3 Graphical determination of the propagation constants of / = 1 EH modes for a

step-index fiber.
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HE (m=1)

Figure 3-4 Graphical determination of the propagation constants of the / = 1 HE modes for

a step-index dielectric waveguide.
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V parameter
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Figure 3-5 Normalized propagation constant as a function of V parameter for a few of the
lowest-order modes of a step-index waveguide [4].
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For n1-n2<<nl, LP approximation is valid.
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Figure 3-6 Normalized propagation constant b as function of normalized frequency V for the
guided modes of the optical fiber, b = (B/k, — n,)/(n, — n.,). (After Reference {51.) ;

Single mode cut off: V=2.405

ECE 162C



Modes as a function of V parameter
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Figure 3-9 Fractional power contained in the cladding as a function of the frequency param-
eter V. (After Reference [5].)

At cutoff, all the power 1s in the cladding.
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Degenerate Modes LP
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Figure 3-8 Sketch of the fiber cross section and the four possible distributions of |
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Common fiber types

Glass fiber:
— Step index: n;=1.48 n,=1.46
e Ge doped core
» Depressed cladding (Fluorine doped)
« Amplifier (Er doped)
— Graded index fiber: profile designed so all modes travel at the same
velocity

— Polarization preserving fiber (strain or ellipticity to break the
degeneracy between the two polarization modes.

— Dispersion management:
 Dispersion shifted fiber
 Dispersion flattened fiber

Plastic fiber (low cost, automotive, stereo, etc.) Polymethyl methacrylate
core
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Fiber-Optic Waveguides

Step index fiber: Standard for single mode (small core size — 8 micron)

Graded-index fiber

Step-index fiber

h
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Radial distance 5

Radial distance
Figure 2.1: Cross section and refractive-index profile for step-index and graded-index fibers
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Graded index fiber: Designed so all multimodes travel at the same velocity.



Two primary limits to
D

* Loss: Loss budget for loss limited transmission

* Dispersion: Dispersion budget for dispersion
limited transmission.
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Comparison to cable
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FIGURE 3-11

A comparison of the attenuation as a function of frequency or data rate of various coaxial cables
and several types of high-bandwidth optical fibers.



Loss in early optical fibers
(now the O-H peaks around 1.4 pum are small)
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Figure 3-19 Observed loss spectrum of a germanosilicate single-mode fiber. Estimated loss
spectra for various intrinsic materials effects and waveguide imperfections are also shown.
(From Reference [20].)
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Two primary limits to
D

* Loss: Loss budget for loss limited transmission

* Dispersion: Dispersion budget for dispersion
limited transmission.
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Loss Budget

*  Puanstransmitter power

*  Ppr.=sensitivity of recetver

p rec — ptrans e

« Take 10 log of each side and express in dBm
e« PP

trans® — rec

—al

P =P

trans

al

* Example:
* Piu=10dBm
e P_=-20dBm

1rcc

HE1250 4B/0.2 dB/km=150 km

max



Dispersion

e Multimode— different modes have different [3
e Intramodal (1.e. group-velocity dispersion)

— Material dispersion — silica refractive index is a function of
wavelength

— Waveguide dispersion — V parameter 1s a function of
wavelength

« Polarization-Mode Dispersion — bifrefringence induced by
perturbations
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Multimode Dispersion

» For step index multimode fibers, the fiber bandwidth (in MHz km) is given by

B<n3 C
n.- LA

« For graded index fibers, the fiber bandwidth in MHz km is given by

3C
n LA’

B <
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Fiber-Optic Waveguides

Step index fiber: Standard for single mode (small core size — 8 micron)

Graded-index fiber

Step-index fiber
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Figure 2.1: Cross section and refractive-index profile for step-index and graded-index fibers
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Group-Velocity Dispersion

The index of the mode 1s dependent on the wavelength (i.e. the fiber is
dispersive).

Two components: material dispersion and waveguide dispersion.
These contribute to phase index.

The group index is given by
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Figure 2.8: Variation of refractive index n and group index ne, with wavelength for fused silica.



Material Dispersion

« Refractive index change of silica with optical frequency is
modeled with the Sellmeier Equation:

M Ba)
n“(w) =1+
@ =1+ 2

B; 1s the strength of medium resonance j of the material

; 18 the frequency of medium resonance
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Material Dispersion

* Material dispersion Dy, is the slope of the n, vs. A (times 1/c)

» Therefore, looking at the figure we see that the slope hits zero at
some wavelength — zero-dispersion wavelength

e L Ap~1.27-1.29 ym
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Figure 2.8: Variation of refractive index n and group index n, with wavelength for fused silica.
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Waveguide Dispersion

Waveguide dispersion Dy, comes from
the first and second derivatives of (Vb)
with respect to V

For the wavelength range considered,
Dy, 1s always negative.

Therefore, sum of waveguide and
material dispersion shifts zero-dispersio
wavelength to a slightly longer
wavelength

ECE 162C

Magnitude

12 i

d (Vbh)

Normalized frequency V




Waveguide dispersion
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FIGURE 3-14

The group delay arising from waveguide dispersion as a function of the ' number for a step-index

ECE 162¢c  optical fiber. The curve numbers jm designate the LP;, modes. (Reproduced with permission from
Gloge.*”)



Dispersion
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D 1s dispersion parameter
L is the propagation length
G 1s the spectral width
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Dispersion (sum of material and waveguide dispersion)
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Figure 3-10 Group velocity disperion of (a) dispersion-unshifted 1.3 um fiber and (b) dis-
persion- flattened and dispersion-shifted fibers. (After Reference [1].)
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Dispersion Summary

* Single mode condition required for high
performance

* Multimode fiber used for low cost
* Dispersion 1s designable.

* 1.3 micron: zero of dispersion

e 1.55 micron: minimum loss

» Zero dispersion 1s not good because of
nonlinearities
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