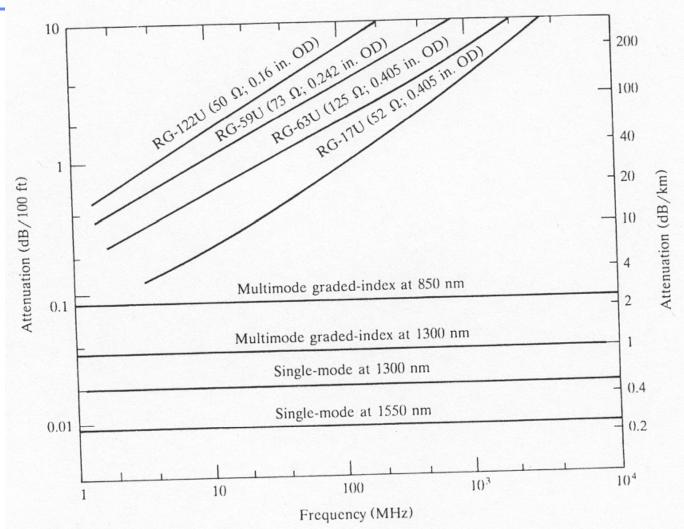
The Wave Equation in Birefringent Media, Modes in Optical Fiber


Read: Kasap, Chapter 2 Homework#1 due Today

ECE 162C Lecture #4 Prof. John Bowers

Two primary limits to transmission

- Loss: Loss budget for loss limited transmission
- Dispersion: Dispersion budget for dispersion limited transmission.

Comparison to cable

FIGURE 3-11

A comparison of the attenuation as a function of frequency or data rate of various coaxial cables and several types of high-bandwidth optical fibers.

E

Loss in early optical fibers (now the O-H peaks around 1.4 µm are small)

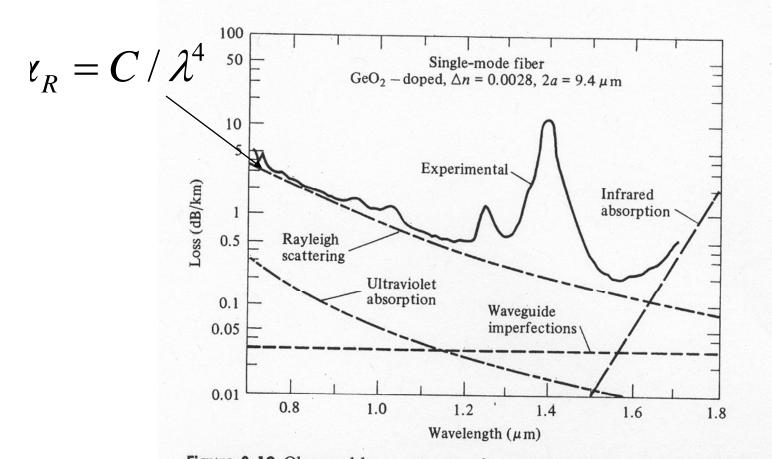


Figure 3-19 Observed loss spectrum of a germanosilicate single-mode fiber. Estimated loss spectra for various intrinsic materials effects and waveguide imperfections are also shown. (From Reference [20].)

Loss Budget

- p_{trans}=transmitter power
- p_{rec}=sensitivity of receiver

$$p_{rec} = p_{trans} e^{-\alpha L}$$

• Take 10 log of each side and express in dBm

• P_{trans}, P_{rec}

$$P_{rec} = P_{trans} - \alpha L$$

$$L_{\max} = \frac{P_{trans} - P_{rec}}{\alpha}$$

- Example:
- $P_{trans} = 10 \text{ dBm}$
- P_{rec} =-20 dBm
- $L_{max}^{ECE \ 162C} = 30 \ dB/0.2 \ dB/km = 150 \ km$

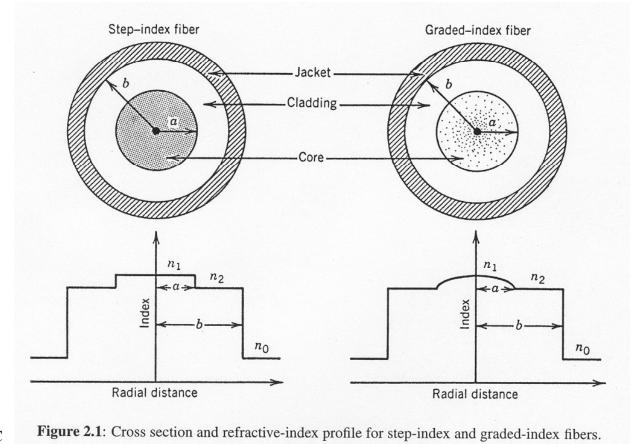
Two primary limits to transmission

- Loss: Loss budget for loss limited transmission
- Dispersion: Dispersion budget for dispersion limited transmission.

Dispersion

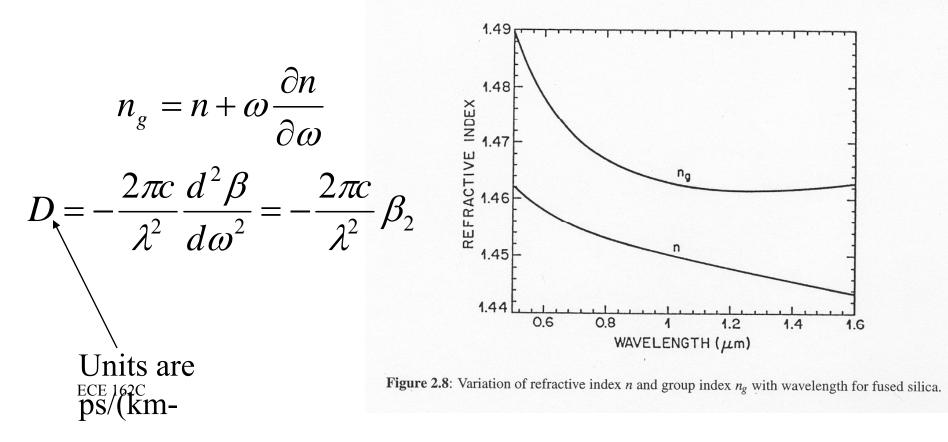
- Multimode– different modes have different β
- Intramodal (i.e. group-velocity dispersion)
 - Material dispersion silica refractive index is a function of wavelength
 - Waveguide dispersion V parameter is a function of wavelength
- Polarization-Mode Dispersion bifrefringence induced by perturbations

Multimode Dispersion


• For step index multimode fibers, the fiber bandwidth (in MHz km) is given by

$$B < \frac{n_2}{n_1^2} \frac{c}{L\Delta}$$

• For graded index fibers, the fiber bandwidth in MHz km is given by


$$B < \frac{8c}{n_1 L \Delta^2}$$

- Step index fiber: Standard for single mode (small core size 8 micron)
- Graded index fiber: Designed so all multimodes travel at the same velocity.

- The index of the mode is dependent on the wavelength (i.e. the fiber is dispersive).
- Two components: material dispersion and waveguide dispersion.
- These contribute to phase index.
- The group index is given by

Material Dispersion

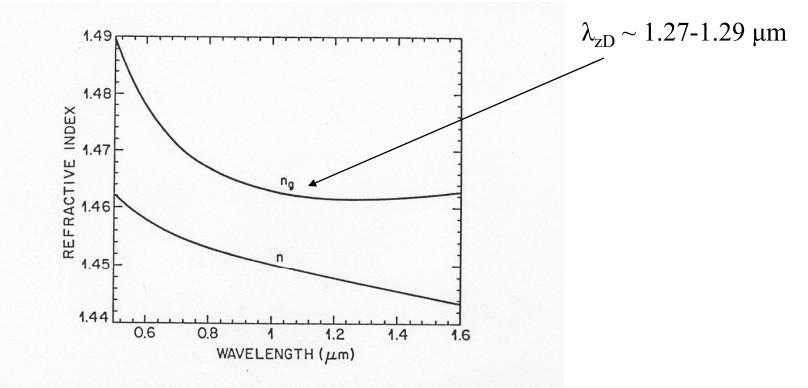
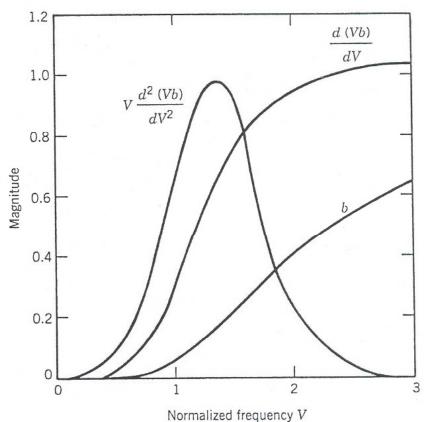
• Refractive index change of silica with optical frequency is modeled with the Sellmeier Equation:

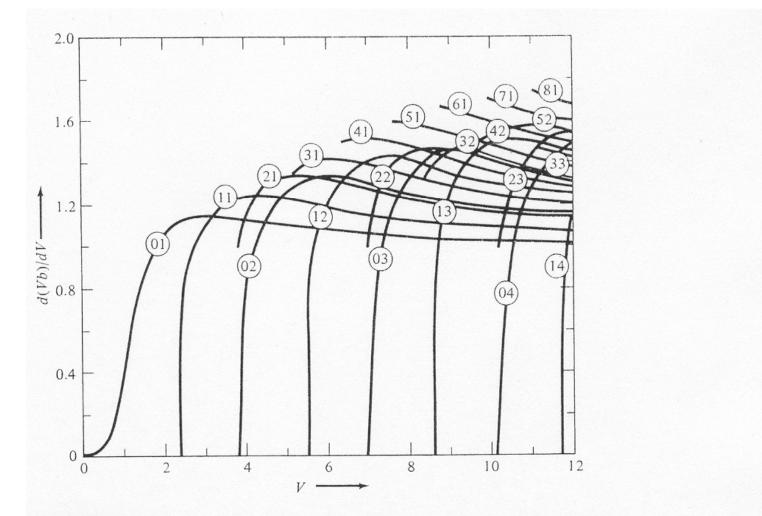
$$n^{2}(\omega) = 1 + \sum_{j=1}^{M} \frac{B_{j}\omega_{j}}{\omega_{j}^{2} - \omega^{2}}$$

 B_j is the strength of medium resonance j of the material ω_i is the frequency of medium resonance j

Material Dispersion

- Material dispersion D_M is the slope of the n_g vs. λ (times 1/c)
- Therefore, looking at the figure we see that the slope hits zero at some wavelength zero-dispersion wavelength

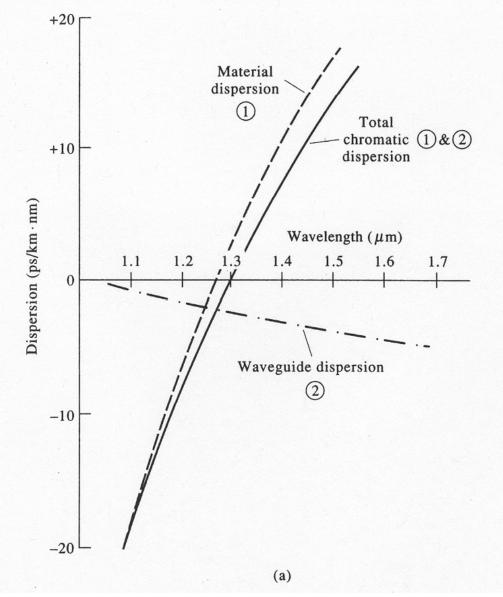



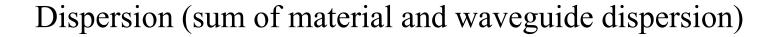

Figure 2.8: Variation of refractive index n and group index n_g with wavelength for fused silica.

Waveguide Dispersion

- Waveguide dispersion D_W comes from the first and second derivatives of (Vb) with respect to V
- For the wavelength range considered, D_W is always negative.
- Therefore, sum of waveguide and material dispersion shifts zero-dispersion wavelength to a slightly longer wavelength

Waveguide dispersion


FIGURE 3-14


The group delay arising from waveguide dispersion as a function of the V number for a step-index optical fiber. The curve numbers *jm* designate the LP_{jm} modes. (Reproduced with permission from Gloge.³⁷)

Dispersion

$\tau = DL\sigma$ $\Delta T = DL\Delta\lambda$

D is dispersion parameter L is the propagation length σ is the spectral width

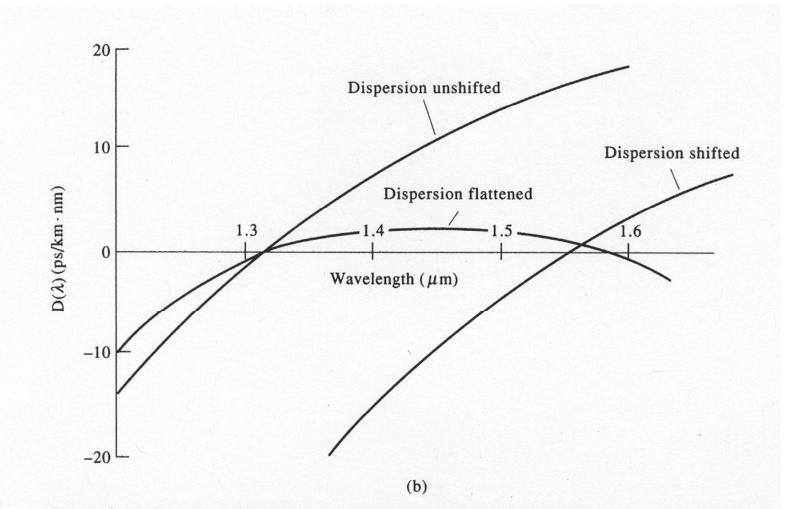
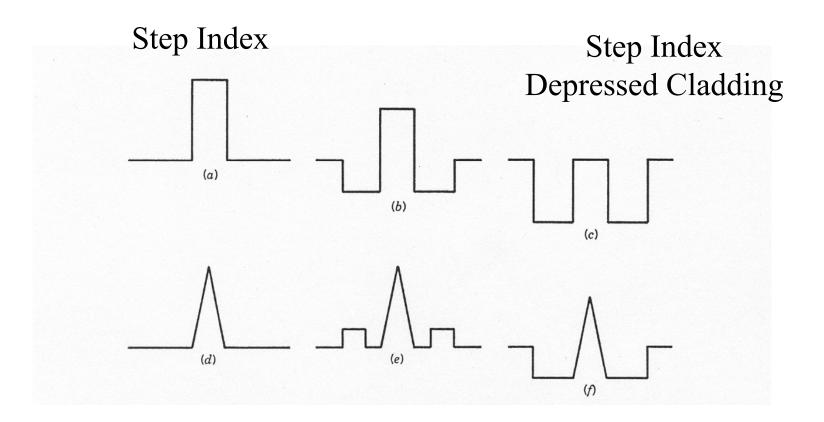



Figure 3-10 Group velocity disperion of (a) dispersion-unshifted 1.3 μ m fiber and (b) dispersion-flattened and dispersion-shifted fibers. (After Reference [1].)

Dispersion Shifted Fiber Designs

Dispersion Shifted Fiber Designs

Chirp

- Fourier transform of a pulse gives amplitudes and phase of the frequency components. Chirp is a property that describes how the phase changes with time.
- Instantaneous frequency is equal to the slope of the phase (divided by 2π). Therefore chirp can also be described as the frequency modulation.
- If chirp parameter C is zero, the pulse is transform-limited. If the product of the GVD parameter and chirp parameter (β_2 C) is positive, the pulse broadens faster. If negative, the pulse narrows to a minimum and then broadens.

$$\delta\omega(t) = -\frac{\partial\phi}{\partial t} = \frac{C}{T_0^2} t$$

$$\frac{T_1}{T_0} = \left[\left(1 + \frac{C\beta_2 z}{T_0^2} \right)^2 + \left(\frac{\beta_2 z}{T_0^2} \right)^2 \right]^{1/2}$$

Dispersion Budget

• Pulse spreading < Pulse width/4

$$\tau = DL\sigma < \frac{1}{4B}$$
$$L < \frac{1}{4BD\sigma}$$

- For Fabry Perot laser, spectral width $\sim 2 \text{ nm}$
- So, for conventional fiber at 1.5 micron, D=15 ps/nm/km

$$L < \frac{1}{4 \bullet 2nm \bullet 15 \, ps \, / \, nm \, / \, kmB} = \frac{8.3 GHz \bullet km}{B}$$

• Gee, at 10 Gbit/s, this is just 0.8 km. ECE 162C

Dispersion Limits

- First solution: use a single frequency laser, then spectral width is 0.1 nm and the limit is 167 Gbps km.
- Second solution: Use dispersion shifted fiber, so D~1 ps/nm km. This was done in Japan. Then, the limit is 2500 Gbps km

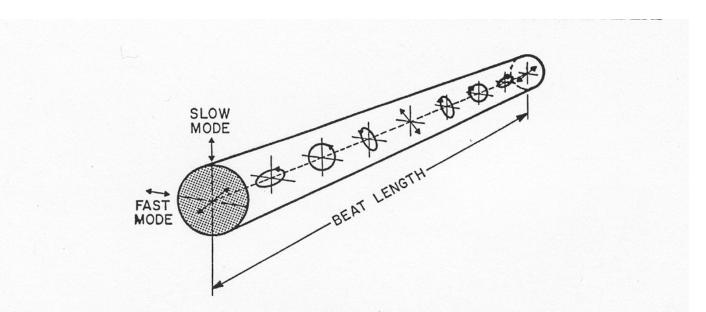
$$L < \frac{1}{4 \bullet 0.1 nm \bullet 1 ps / nm / kmB} = \frac{2.5 THz \bullet km}{B}$$

• Third solution: Use external modulators. Then

$$\sigma = 0.4B / 17GHz / nm$$
$$L < \frac{17GHz / nm}{4 \bullet 0.4 \bullet 1 ps / nm / kmB^2}$$

• Note: Nonlinearity and four wave mixing are big problems in fibers with low dispersion

Table 2.1 Characteristics of several commercial fibers


Fiber Type and	A _{eff}	$\lambda_{ m ZD}$	D (C band)	Slope S
Trade Name	(μm^2)	(nm)	[ps/(km-nm)]	$[ps/(km-nm^2)]$
Corning SMF-28	80	1302-1322	16 to 19	0.090
Lucent AllWave	80	1300–1322	17 to 20	0.088
Alcatel ColorLock	80	1300-1320	16 to 19	0.090
Corning Vascade	101	1300-1310	18 to 20	0.060
Lucent TrueWave-RS	50	1470-1490	2.6 to 6	0.050
Corning LEAF	72	1490-1500	2 to 6	0.060
Lucent TrueWave-XL	72	1570-1580	-1.4 to -4.6	0.112
Alcatel TeraLight	65	1440-1450	5.5 to 10	0.058

Dispersion Limits

- Multimode fiber:
 - Every mode has a different velocity: huge dispersion limit.
 - Solution: Graded index fiber: adjust the index profile so every mode travels at the same velocity. Big improvementmost multimode fiber today is graded index.
- Single mode fiber:
 - Only one mode so the dominant dispersion is due to material dispersion and waveguide dispersion
 - PMD Polarization mode dispersion: real fiber is not perfectly concentric and there is strain in the fiber and cabling so fiber does have birefringence i.e. PMD.

Polarization

- So called single mode fiber is not really single mode. There are two degenerate modes (for example, vertical and horizontal polarization).
- Fiber is in general birefringent due to core ellipticity or strain so the two polarizations travel at different velocities.
- The polarization evolves in time. The distance over which it repeats is the beat length.

Figure 2.6: State of polarization in a birefringent fiber over one beat length. Input beam is linearly polarized at 45° with respect to the slow and fast axes.

Dispersion Summary

- Single mode condition required for high performance
- Multimode fiber used for low cost
- Dispersion is designable.
- 1.3 micron: zero of dispersion
- 1.55 micron: minimum loss
- Zero dispersion is not good because of nonlinearities

Material

- Gain and absorption (1 week)
- Lasers (2 weeks)
- Photodetectors (2 weeks)
- Modulators (2 weeks)