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Bandgap Heaven

• Offsets in blue #s
• Bandgaps in black
U it V 450• Units are meV
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InAs RT μ > 30,000 cm /Vs



General comments
• If the composition is constant, the bandgap is constant.  

Hence, the separation of conduction band and valence band , p
are constant.

• If there is no field, the bands are horizontal.
• Use the depletion edge approximation; either the material is 

depleted of free carriers (and the bands are bent) or there is no 
field and the bands are flat. 

• Depleted doped material has a quadratic bend and linearly 
increasing field.

• Depleted undoped material has constant electric field and 
linear band bending.
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InP/InGaAs/InP 
Square WellSquare Well

• N+ InGaAs: Eg=.76 eV
• N+ InP: Eg=1.35 eVN  InP: Eg 1.35 eV

ΔEg=.59 eV
ΔEc=.20 eV
ΔE = 39 eVΔEv .39 eV

• Adjust Fermi level to account for 
bias.

• Keep bandgaps constant.eep ba dgaps co sta t.

Calculate the absorption bandedge assuming a 100 Angstrom 
quantum well and me*=0.1 me and mh*=1 me
Calculate the absorption bandedge assuming a 100 Angstrom 
quantum dot and me*=0.1 me and mh*=1 me
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q e e h e
Check the validity of your assumptions.



Three types of heterojunctions

• Type I (Straddling)
– Free electrons and holes reside in the same 

region of space.
– Examples: AlAs/GaAs, InP/GaInAs
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Three types of heterojunctions

• Type I (Straddling lineup)
• Type II (Staggered lineup)

ΔEc and ΔEc have the same sign.c c g
– Free electrons and holes reside in different 

regions of space.g p
– Example: AlSb/InAs
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Three types of heterojunctions
T I (St ddli li )• Type I (Straddling lineup)

• Type II (Staggered lineup)
• Type III (Broken Gap Lineup)

ΔEc and ΔEc have the same sign.c c g
– Free electrons and holes reside in different 

regions of space.
– Example: GaSb/InAs
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Bands
• Direct bandgap: Minimum of conduction band and 

maximum of valence band occur at the same point in k a u o va e ce ba d occu at t e sa e po t
space, typically k=0 (defined as Γ).
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Si: Indirect gap.
h i i dHence, a phonon is required to 

conserve momentum. Less 
likely to occur.  Lower gain y g
and absorption (except at 
higher energies).
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Electronic transitions

R12

• R12: absorption of  a photon
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Electronic transitions

• Rsp

• R12: absorption of  a photon
• R : spontaneous emission of a photon• Rsp: spontaneous emission of a photon
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Electronic transitions

• R21

• R12: absorption of  a photon
• R : spontaneous emission of a photon• Rsp: spontaneous emission of a photon
• R21: stimulated emission of a photon
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Electronic transitions

Rnr

• R12: absorption of  a photon
• R : spontaneous emission of a photon• Rsp: spontaneous emission of a photon
• R21: stimulated emission of a photon
• Rnr: nonradiative recombination (Auger, 

trap, etc.)
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Rate Equations

RGdN
= RG

dt
−=

N is the electron density (assumed equal to hole density)
G is the generation rate of electrons
R is the total recombination rate
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Rate Equations

RG
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N is the electron density (assumed equal to hole density)
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y ( q y)
G is the generation rate of electrons
R is the total recombination rate



Material Gain
Calculated gain curves 

for InGaAsP/InP laser 
N=0

operating at 1.3µm
• Gain peak moves to 

N=0

shorter wavelengths 
with higher pumping

• Higher differential 
gain for wavelengths 
shorter than the gainshorter than the gain 
peak

ECE 162CN.K.. Dutta, J. Appl. Phys., 51, 6095 (1980)



Gain

High gain requiresHigh gain requires
1) upper level full (f~1)

kTEEEf /)(
1)( =

2) lower level empty (f~0)

ECE 162C

kTEE Fe
Ef /)(1

)( −+



Carrier Injection

• In equilibrium,
22
inpn =

• Under forward bias,
2
inpn >>

• Under reverse bias, 
2
inpn <<
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Carrier Injection

• In equilibrium,

2

• Under forward bias,

2
inpn = == FFpFn EEE

,
2
inpn >> 0>− FpFn EE

• Under reverse bias, 
2npn << 0EE
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Quasi Fermi Levels
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Quasi Fermi Levels

= − kTEE
ienn iFn /)(
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• Gain occurs when
ωω hh >−> FpFn EEwheng 0)(
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Optical Gain in Semiconductors

Gain between two levels depends on:

• Carrier density, i.e. level of inversion
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• Reduced density of states
111
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• Transition matrix element |M|2

vcr ρρρ
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Transition matrix element |M|



Gain : Reduced Density of States

The optical gain is proportional to the reduced density ofThe optical gain is proportional to the reduced density of 
state at the transition energy:
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Gain : Strained QW
Compressive strain increases the energy gap between 
the heavy hole and the light hole subbands. This 
means fewer carriers in light hole bandmeans fewer carriers in light hole band.

ECE 162CL.A. Coldren and S.W. Corzine, “Diode Lasers and Photonic Integrated Circuit”, Wiley (1995)

Lattice matched QW Compressive strain



Gain
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Gain
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Gain
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Lineshape function

• To get total gain, integrate over all possible 
states that contribute to the gain (within a 
lineshape function).
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• This Lorentzian lineshape is common, but not the most accurate.



Lasing threshold

• Lasing occurs when the round trip gain 
equals the loss in the cavity.

• Not all of the mode sees gain, but only the 
fraction that overlaps with the gain region.  

h d l i i l d hHence the modal gain is related to the 
material gain by an effective confinement 
factor Γfactor Γ
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Double Heterostructure Lasers (Kroemer)

• Carriers diffuse away so it is difficult to get 
high gaing g

• A method of confining the carriers to a 
region in space is necessaryregion in space is necessary

• Double heterostructure (proposed in 1964 
but not implemented until 1968 which ledbut not implemented until 1968, which led 
to the first cw lasers).

- -
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Gain : Doping

d i i th ti i i th diff ti lp-doping in the active region increases the differential 
gain, at the expense of increased threshold current 
densityy

ECE 162CL.A. Coldren and S.W. Corzine, “Diode Lasers and Photonic Integrated Circuit”, Wiley (1995)



Rate Equations

Neglecting the phase of the optical field, the 
length dependence of the carrier and photonlength dependence of the carrier and photon 
densities, and the modal dependence; the 
rate equations for the averaged photon andrate equations for the averaged photon and 
carrier densities become:
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Gain
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Gain
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Gain
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Lineshape function

• To get total gain, integrate over all possible 
states that contribute to the gain (within a 
lineshape function).
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• This Lorentzian lineshape is common, but not the most accurate.



Lasing threshold

• Lasing occurs when the round trip gain 
equals the loss in the cavity.

• Not all of the mode sees gain, but only the 
fraction that overlaps with the gain region.  

h d l i i l d hHence the modal gain is related to the 
material gain by an effective confinement 
factor Γfactor Γ
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Lasing threshold
2r1 is the amplitude reflection coefficient.

R1 is the power reflection coefficient
R is the average power reflection coefficient
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32.0=R (typical for InGaAsP or GaAs Lasers)



Round trip phase

• Round trip phase must be a multiple of pi.
• The round trip cavity length must be a multiple of p y g p

the wavelength
nLm 2λ =

• The spacing between modes is
2λ
Lng2

λλ =Δ
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Laser Structure
Current ConfinementCurrent Confinement

Di l t i l SiO SiN l i id• Dielectric layers, e.g. SiO2, SiNx, polyimide 
or oxidized AlGaAs

Very low capacitance– Very low capacitance
– Possible reliability problem
– Poor thermal characteristics

• Reverse biased p-n junctions
– Good high power and high T capability

L d l ti it– Large depletion capacitance
• Larger bandgap homojunctions

Simple fabrication

ECE 162C

– Simple fabrication
– Leakage current and diffusion capacitance are high

• Semi-insulating semiconductor regions


