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Homework 1 (Due Friday, October 12, at 5pm) 
 
1) Kinematics and workspace.  Consider the kinematics of the 3-link arm example discussed in 
class and shown in the figure below.  Note that this drawing is not to scale. We wish to consider 
different possible lengths for each of the three links.  For parts A) and B) below, determine i) the 
reachable workspace for (x2,y2), ii) the reachable workspace for (xe, ye) and ii) the dexterous 
workspace for (xe, ye).  Accurately sketch and label each region, so that the dimensions (radii) of 
the regions are shown clearly. 
 A) L1=0.6, L2=0.6, L3=0.2 
 B) L1=1, L2=2, L3=0.4 

C) Now, assume: L1=1.2, and L2=1. Given some arbitrary value for L3, will some 
dexterous workspace always exist? If so, explain why.  If not, specify the range(s) of 
values for L3 for which a dexterous workspace will exist. 

 
Recall that the reachable workspace is the set of all points the end effector can reach, while the 
dexterous workspace is the set of all points the end effect can reach at an arbitrary angle. 
 
 
 
 
 
 
 
 
 

Figure 1. Kinematics of 3-link arm (problem 1). 
 

2) Euler angles. We mentioned Euler angle rotations only briefly in class. This problem is 
designed to build better intuition about the conventions typically used to specify rotations 
(orientation) of a rigid body.  Rotation angles can be specified either with respect to: 

[1] A relative coordinate frame, that is fixed to the rotating body 
[2] An absolute coordinate frame, that remains fixed; i.e., a global coordinate frame. 

In either case, we require 3 rotations to specify any arbitrary orientation of a rigid body in space. 
We will refer to case 1 as “Euler angle rotation” and case 2 as “fixed angle rotation”.  
 

                 
 

Figure 2. Local coordinate frame definition for dice in problem 2. 
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A standard American die (e.g., from a set Las Vegas dice) is shown above.  The numbers 1 
through 6 are arranged such that the numbers on opposite faces always sum to 7:  1 is opposite 6, 
2 opposes 5, and 3 is opposite 4.  Let us define a relative coordinate frame for a die, as shown at 
left in Figure 2.  When aligned with the global coordinate frame, the x axis points out of side 1, y 
points out of 2, and z points out of 3, as shown.  If we rotate the die at left counter-clockwise by 
180 degrees about either z (absolute) or z’ (relative), it will appear as shown in the middle figure.  
If we now rotate the die shown in the middle figure by 90 degrees (again, CCW is conventional) 
about y (absolute y), then faces A, B, and C in the diagram at right will show 3, 5, and 1, 
respectively.  If we instead rotate the die shown in the middle figure by 90 degrees about the 
relative axis, y’, then A=4, B=5, and C=6. 
  
For each case below, begin with the configuration A=1, B=2, C=3.  Determine the new 
orientation (A=?, B=?, C=?) that results from performing the following rotations of the die: 
 
 A) An Euler angle rotation in the order z’,y’,z’, by angles -90°, +90°, +90°. 

 
 B) A fixed angle rotation in the order z,y,z, by angles +90°, +90°, -90°. 
 
 C) An Euler angle rotation in the order y’,z’,x’ by angles +45°, +90°, +45° 
 
 D) A fixed angle rotation in the order x,z,y by angles +45°, +90°, +45°. 
 
As described in pages 49-53 in Spong, performing a set of rotations in relative coordinates 
results in the same configuration as performing these rotations in the reverse order in absolute 
coordinates.  Note that this would mean your answers to A) and B) should therefore be 
identical. Similarly, you can check that answer C) and D) are the same, as well. 
Note: It is probably wise to sketch the “intermediate” orientations above, rather than doing all 
rotations “in your head”! 
 
3) Ball Toss Trajectory. 
In Lab 2, you will design a controller to toss a ping pong ball into a cup. In this problem, we will 
look at some issues in trajectory planning. 
 
Once the ping-pong ball has been thrown and it traveling through free space, we will assume that 
it follows a “ballistic trajectory”: constant forward velocity, and constant downward acceleration 
due to gravity.  (This neglects air resistance or other effects, to simplify the physics in a “toy 
example”…)  For a given initial ball velocity, a 45 degree angle (so that the x and y components 
of velocity are equal) maximizes the distance in x that the ball will travel before falling to its 
initial y position (i.e., the take-off y height, when the ball was released), as depicted in Figure 3.   
 
Now, assume that 

€ 

˙ θ 1 and 

€ 

˙ θ 2  each have the same maximum possible velocity magnitude, 

€ 

˙ θ max . 
Our goal in this problem is to MAXIMIZE the distance we can throw a ball.  
 

a) Solve for the set of values for 

€ 

θ1 and 

€ 

θ2  that will result in a 45-degree initial trajectory 
for the ball (heading in the positive x direction). 
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b) Assume 

€ 

˙ θ max =10  (rad/s), L1=0.15 (m), and L2=0.11 (m).  Solve for the initial x (and y) 
velocities of the ping-pong ball, at the moment when the angles are at the values from 
part (a) [which is the “time of release” for the ball at its 45-degrees trajectory]. 

c) Sketch (by hand) a SMOOTH, feasible trajectory for the ball JUST PRIOR to its release, 
and show that this is always within the “reachable workspace” of the arm by also shading 
in this workspace region. There are two important issues here: 
1. The ball must always be within the reachable workspace of the 2-link arm. 
2. The final velocity must be at +45 degrees.  
Here, the trajectory should be a smooth (curvy) path that stays in the feasible workspace 
for the arm and has a slope of 45 deg at its end.  Use your answer from part a to be sure 
the geometry of the take-off point is correct, within the feasible workspace. 
 

Recall from lecture that the geometric distances shown (A, B, C, and D) map to values in the 
Jacobian, J. This should give you intuition about how to MAXIMIZE the magnitude of dx/dt and 
dy/dt. 
           

                  
Figure 3. Ballistic trajectory (left) and 2-link arm (right) for problem 3. 

 
 
4) Singularities.  Below is a figure of a mechanism constrained to a single degree of freedom, x, 
at the output. The relationship between θ and x is: 

€ 

x = 2Lcosθ  
 

 
Figure 4. 1 DOF mechanism for problem 4. 

 
 A) Derive the relationship between 

€ 

˙ x  and 

€ 

˙ θ . 
B) Assume x = 0, and we desire 

€ 

˙ x  = -4 (m/s).  What must 

€ 

˙ θ  be to achieve this? 
C) Assume x = L, and we desire 

€ 

˙ x  = -4 (m/s).  What must 

€ 

˙ θ  be to achieve this? 
D) Assume x = 1.9L, and we desire 

€ 

˙ x  = -4  (m/s).  What must 

€ 

˙ θ  be to achieve this? 
E) Assume x = 2L, and we desire 

€ 

˙ x  = -4  (m/s).  What must 

€ 

˙ θ  be to achieve this? 
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Configuration E is known as a “singularity”. It is a configuration in which it becomes impossible 
to move in a particular location: that is, note that 

€ 

˙ x  > 0 is impossible at x = 2L. Singularities can 
be “dangerous” places to operate, because (often) they are configurations near which the robot’s 
input velocity (here, 

€ 

˙ θ ) must “blow up”, unbounded, to achieve a finite output velocity at the end 
effector. This phenomenon explains (in part) why humanoid robots often avoid operating with 
legs “fully extended”, near a singularity. 
 
 
 
5) Analogous mechanical and electrical impedances as “circuit elements”. Figure 5 shows a 
4th-order (translational mechanical) system (at right) and an analogous circuit structure (at left). 
(“4th-order” means, for one thing, that the denominator of the transfer functions will be a 4th-
order one…) 
 

 
Figure 5. Mechanical impedances in a circuit (problem 5). 
 

A) Use the definitions given in class for mechanical impedance, 

€ 

Zm (s) =
F(s)
v(s)

=
F(s)
sX(s)

, and for 

electrical impedance, 

€ 

Ze (s) =
V (s)
I(s)

, to solve for 

€ 

Z1(s) , 

€ 

Z2(s) , and

€ 

Z3(s)  in the circuit diagram. 

B) Solve for the transfer functions 

€ 

X1(s)
F(s)

 and 

€ 

X2(s)
F(s)

. 
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6) Reflected inertia and mechanical impedance.  
 

            
Figure 6. Motor, transmission, and lab (problem 6). 

 
 
 

Figure 6 shows a system with a motor driving a load.  In the lefthand diagram, 

€ 

˙ θ m  (motor 
velocity) and 

€ 

˙ θ L  (load velocity) are simply related through the gear ratio: 

€ 

˙ θ m = −N ˙ θ L . In the 
righthand diagram, there is now a spring element, with stiffness kg, between the larger gear and 
the load inertia, JL.	
  This	
  spring	
  models	
  the	
  compliance	
  that	
  is	
  sometimes	
  a	
  noticeable	
  factor	
  
in	
  real	
  transmission	
  systems,	
  and	
  it	
  changes	
  the	
  dynamics	
  from	
  a	
  2nd-­‐order	
  system	
  to	
  a	
  4th-­‐
order	
  system.	
  	
  	
  
	
  
Note,	
   the	
   lefthand	
  system	
   is	
  one	
  we	
  have	
  already	
  considered	
   in	
  class	
   (Lecture	
  4).	
  Also,	
   if	
  
you	
   look	
   carefully,	
   you	
   should	
   notice	
   that	
   the	
   righthand	
   system	
   is	
   (intentionally)	
   very	
  
similar	
  to	
  the	
  translational	
  mechanical	
  system	
  depicted	
  in	
  problem	
  5.	
  (So	
  in	
  a	
  way,	
  you	
  are	
  
solving	
  the	
  same	
  problem	
  again,	
  but	
  through	
  a	
  different	
  perspective.)	
  
	
  

A)	
   Solve	
   for	
   the	
   transfer	
   functions	
  

€ 

θm (s)
τ (s)

	
   and	
  

€ 

θL (s)
τ (s)

	
   for	
   the	
   system	
   with	
   no	
   shaft	
  

compliance	
  (that	
  is,	
  in	
  the	
  limit	
  as	
  kg	
  become	
  infinitely	
  stiff).	
  
 

B) Solve for the transfer functions	
  

€ 

θm (s)
τ (s)

	
  and	
  

€ 

θL (s)
τ (s)

	
  for	
  the system with shaft compliance. 

 


