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Homework 1 (Due Friday, October 12, at 5pm) 
 
1) Kinematics and workspace.  Consider the kinematics of the 3-link arm example discussed in 
class and shown in the figure below.  Note that this drawing is not to scale. We wish to consider 
different possible lengths for each of the three links.  For parts A) and B) below, determine i) the 
reachable workspace for (x2,y2), ii) the reachable workspace for (xe, ye) and ii) the dexterous 
workspace for (xe, ye).  Accurately sketch and label each region, so that the dimensions (radii) of 
the regions are shown clearly. 
 A) L1=0.6, L2=0.6, L3=0.2 
 B) L1=1, L2=2, L3=0.4 

C) Now, assume: L1=1.2, and L2=1. Given some arbitrary value for L3, will some 
dexterous workspace always exist? If so, explain why.  If not, specify the range(s) of 
values for L3 for which a dexterous workspace will exist. 

 
Recall that the reachable workspace is the set of all points the end effector can reach, while the 
dexterous workspace is the set of all points the end effect can reach at an arbitrary angle. 
 
 
 
 
 
 
 
 
 

Figure 1. Kinematics of 3-link arm (problem 1). 
 

2) Euler angles. We mentioned Euler angle rotations only briefly in class. This problem is 
designed to build better intuition about the conventions typically used to specify rotations 
(orientation) of a rigid body.  Rotation angles can be specified either with respect to: 

[1] A relative coordinate frame, that is fixed to the rotating body 
[2] An absolute coordinate frame, that remains fixed; i.e., a global coordinate frame. 

In either case, we require 3 rotations to specify any arbitrary orientation of a rigid body in space. 
We will refer to case 1 as “Euler angle rotation” and case 2 as “fixed angle rotation”.  
 

                 
 

Figure 2. Local coordinate frame definition for dice in problem 2. 
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(xe,	  ye)	   End	  effector	  is	  at	  the	  tip	  of	  
L3,	  at	  (xe,	  ye),	  and	  point	  at	  
angle	  θe.	  
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A standard American die (e.g., from a set Las Vegas dice) is shown above.  The numbers 1 
through 6 are arranged such that the numbers on opposite faces always sum to 7:  1 is opposite 6, 
2 opposes 5, and 3 is opposite 4.  Let us define a relative coordinate frame for a die, as shown at 
left in Figure 2.  When aligned with the global coordinate frame, the x axis points out of side 1, y 
points out of 2, and z points out of 3, as shown.  If we rotate the die at left counter-clockwise by 
180 degrees about either z (absolute) or z’ (relative), it will appear as shown in the middle figure.  
If we now rotate the die shown in the middle figure by 90 degrees (again, CCW is conventional) 
about y (absolute y), then faces A, B, and C in the diagram at right will show 3, 5, and 1, 
respectively.  If we instead rotate the die shown in the middle figure by 90 degrees about the 
relative axis, y’, then A=4, B=5, and C=6. 
  
For each case below, begin with the configuration A=1, B=2, C=3.  Determine the new 
orientation (A=?, B=?, C=?) that results from performing the following rotations of the die: 
 
 A) An Euler angle rotation in the order z’,y’,z’, by angles -90°, +90°, +90°. 

 
 B) A fixed angle rotation in the order z,y,z, by angles +90°, +90°, -90°. 
 
 C) An Euler angle rotation in the order y’,z’,x’ by angles +45°, +90°, +45° 
 
 D) A fixed angle rotation in the order x,z,y by angles +45°, +90°, +45°. 
 
As described in pages 49-53 in Spong, performing a set of rotations in relative coordinates 
results in the same configuration as performing these rotations in the reverse order in absolute 
coordinates.  Note that this would mean your answers to A) and B) should therefore be 
identical. Similarly, you can check that answer C) and D) are the same, as well. 
Note: It is probably wise to sketch the “intermediate” orientations above, rather than doing all 
rotations “in your head”! 
 
3) Ball Toss Trajectory. 
In Lab 2, you will design a controller to toss a ping pong ball into a cup. In this problem, we will 
look at some issues in trajectory planning. 
 
Once the ping-pong ball has been thrown and it traveling through free space, we will assume that 
it follows a “ballistic trajectory”: constant forward velocity, and constant downward acceleration 
due to gravity.  (This neglects air resistance or other effects, to simplify the physics in a “toy 
example”…)  For a given initial ball velocity, a 45 degree angle (so that the x and y components 
of velocity are equal) maximizes the distance in x that the ball will travel before falling to its 
initial y position (i.e., the take-off y height, when the ball was released), as depicted in Figure 3.   
 
Now, assume that 

€ 

˙ θ 1 and 

€ 

˙ θ 2  each have the same maximum possible velocity magnitude, 

€ 

˙ θ max . 
Our goal in this problem is to MAXIMIZE the distance we can throw a ball.  
 

a) Solve for the set of values for 

€ 

θ1 and 

€ 

θ2  that will result in a 45-degree initial trajectory 
for the ball (heading in the positive x direction). 
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b) Assume 

€ 

˙ θ max =10  (rad/s), L1=0.15 (m), and L2=0.11 (m).  Solve for the initial x (and y) 
velocities of the ping-pong ball, at the moment when the angles are at the values from 
part (a) [which is the “time of release” for the ball at its 45-degrees trajectory]. 

c) Sketch (by hand) a SMOOTH, feasible trajectory for the ball JUST PRIOR to its release, 
and show that this is always within the “reachable workspace” of the arm by also shading 
in this workspace region. There are two important issues here: 
1. The ball must always be within the reachable workspace of the 2-link arm. 
2. The final velocity must be at +45 degrees.  
Here, the trajectory should be a smooth (curvy) path that stays in the feasible workspace 
for the arm and has a slope of 45 deg at its end.  Use your answer from part a to be sure 
the geometry of the take-off point is correct, within the feasible workspace. 
 

Recall from lecture that the geometric distances shown (A, B, C, and D) map to values in the 
Jacobian, J. This should give you intuition about how to MAXIMIZE the magnitude of dx/dt and 
dy/dt. 
           

                  
Figure 3. Ballistic trajectory (left) and 2-link arm (right) for problem 3. 

 
 
4) Singularities.  Below is a figure of a mechanism constrained to a single degree of freedom, x, 
at the output. The relationship between θ and x is: 

€ 

x = 2Lcosθ  
 

 
Figure 4. 1 DOF mechanism for problem 4. 

 
 A) Derive the relationship between 

€ 

˙ x  and 

€ 

˙ θ . 
B) Assume x = 0, and we desire 

€ 

˙ x  = -4 (m/s).  What must 

€ 

˙ θ  be to achieve this? 
C) Assume x = L, and we desire 

€ 

˙ x  = -4 (m/s).  What must 

€ 

˙ θ  be to achieve this? 
D) Assume x = 1.9L, and we desire 

€ 

˙ x  = -4  (m/s).  What must 

€ 

˙ θ  be to achieve this? 
E) Assume x = 2L, and we desire 

€ 

˙ x  = -4  (m/s).  What must 

€ 

˙ θ  be to achieve this? 
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Configuration E is known as a “singularity”. It is a configuration in which it becomes impossible 
to move in a particular location: that is, note that 

€ 

˙ x  > 0 is impossible at x = 2L. Singularities can 
be “dangerous” places to operate, because (often) they are configurations near which the robot’s 
input velocity (here, 

€ 

˙ θ ) must “blow up”, unbounded, to achieve a finite output velocity at the end 
effector. This phenomenon explains (in part) why humanoid robots often avoid operating with 
legs “fully extended”, near a singularity. 
 
 
 
5) Analogous mechanical and electrical impedances as “circuit elements”. Figure 5 shows a 
4th-order (translational mechanical) system (at right) and an analogous circuit structure (at left). 
(“4th-order” means, for one thing, that the denominator of the transfer functions will be a 4th-
order one…) 
 

 
Figure 5. Mechanical impedances in a circuit (problem 5). 
 

A) Use the definitions given in class for mechanical impedance, 

€ 

Zm (s) =
F(s)
v(s)

=
F(s)
sX(s)

, and for 

electrical impedance, 

€ 

Ze (s) =
V (s)
I(s)

, to solve for 

€ 

Z1(s) , 

€ 

Z2(s) , and

€ 

Z3(s)  in the circuit diagram. 

B) Solve for the transfer functions 

€ 

X1(s)
F(s)

 and 

€ 

X2(s)
F(s)

. 
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6) Reflected inertia and mechanical impedance.  
 

            
Figure 6. Motor, transmission, and lab (problem 6). 

 
 
 

Figure 6 shows a system with a motor driving a load.  In the lefthand diagram, 

€ 

˙ θ m  (motor 
velocity) and 

€ 

˙ θ L  (load velocity) are simply related through the gear ratio: 

€ 

˙ θ m = −N ˙ θ L . In the 
righthand diagram, there is now a spring element, with stiffness kg, between the larger gear and 
the load inertia, JL.	  This	  spring	  models	  the	  compliance	  that	  is	  sometimes	  a	  noticeable	  factor	  
in	  real	  transmission	  systems,	  and	  it	  changes	  the	  dynamics	  from	  a	  2nd-‐order	  system	  to	  a	  4th-‐
order	  system.	  	  	  
	  
Note,	   the	   lefthand	  system	   is	  one	  we	  have	  already	  considered	   in	  class	   (Lecture	  4).	  Also,	   if	  
you	   look	   carefully,	   you	   should	   notice	   that	   the	   righthand	   system	   is	   (intentionally)	   very	  
similar	  to	  the	  translational	  mechanical	  system	  depicted	  in	  problem	  5.	  (So	  in	  a	  way,	  you	  are	  
solving	  the	  same	  problem	  again,	  but	  through	  a	  different	  perspective.)	  
	  

A)	   Solve	   for	   the	   transfer	   functions	  

€ 

θm (s)
τ (s)

	   and	  

€ 

θL (s)
τ (s)

	   for	   the	   system	   with	   no	   shaft	  

compliance	  (that	  is,	  in	  the	  limit	  as	  kg	  become	  infinitely	  stiff).	  
 

B) Solve for the transfer functions	  

€ 

θm (s)
τ (s)

	  and	  

€ 

θL (s)
τ (s)

	  for	  the system with shaft compliance. 

 


