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Homework 4  
 

Problem 1 – Due 4pm Monday, Nov. 19.  (Other problems due Tuesday, Nov. 20.) 
 
To prepare for Lab 4, use your code from Prelab 3 and Lab 3, and design tractories for each of 
the three wheels over time to travel as required by the caption in Figure 1. Come up with at least 
2 different solution trajectories (e.g., not necessarily an ellipse as the path).  This is challenging 
because the robot must always point a laser pointer at a fixed target. You may refer to code from 
last year’s “Lab 5” (which is Lab 4 this year) to help get started, but YOU MUST WRITE 
YOUR OWN MATLAB CODE. Simply copying the code from last year (or from a friend) is not 
allowed. 
 As in Lab 3, you must first calculate x, y, and phi trajectories for the robot over time. 
Then, approximate the derivatives, dx/dt, dy/dt, and dphi/dt over time. Use your Jacobian 
relationships to determine each of the three wheel velocities, and (finally) integrate these to 
create desired wheel trajectories, as functions of time. Turn in both all of your MATLAB code 
(including electronic copies, as requested by the TAs) and plots of  trajectories. 
 

          

 
Figure 1.  Frames from an “example trajectory” for the omnibot in Lab 4.  The omnibot center of 
body must start and stop on the desired locations, four feet apart from one another.  All parts of 
the robot must avoid the “no-go zone” shown. An ellipse is one solution; there are many other 
options! The omnibot must also aim a laser a fixed target location ANYWHERE along the 
dashed line 3-feet away from the start-to-end line, as shown.  The laser is mounted as shown. 
The entire motion of the omnibot must take no more than 60 seconds, start to finish. 
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Problem 2 – Two-cart system. 
 
You must turn in a copy of your MATLAB code for the parts which require MATLAB 
calculations and/or MATLAB plotting, below. As always, you must do your own work in writing 
this code. (Copying a solution someone else has written is of course not allowed.) 
 
a) Using the MATLAB code template from Lecture 13, derive the equations of motion for the 

system shown in the schematic in Figure 2, below.  You will need to download the function 
“fulldiff.m” from the homework website to complete this. 

b) Write the equations of motion in “state space” format, using 

€ 

X = [x1 x2 ˙ x 1 ˙ x 2]T . 
c) Using your equations from part a, solve for the four transfer functions, A(s) through D(s), 

shown at right in Figure 2. (Notice each block contains either a mechanical impedance or an 
inverse impedance.)  Also determine the signs (+ or -) at each summing junction. 

d) Solve symbolically BY HAND for the transfer function from F1 to X1, X1(s)/F1(s). 
e) Solve symbolically BY HAND for the transfer function from F1 to X2, X2(s)/F1(s). 
f) Now, use the values below in your solution within MATLAB to create Bode plots for your 

transfer functions from c and d, on the SAME SET OF AXES (clearly labeled). 
 

m1 = 20; m2 = 1; k1 = 1200; k2 = 400; b2=20; % SI units for all 
 
 

 

 
Figure 2. Schematic (left) and Block Diagram (right) for Problem 2. 
 
g) Now, repeat c and d for the transfer functions from F2 to X1 and to X2 (instead of from F1).  

Use the same values shown in e, and again put both Bode plots (clearly labeled) on one set of 
axes (different from the axes used in c). 
 

h) List poles and zeros for each of the 4 transfer functions.   
 

Note: Poles should simply be the SAME for all four transfer functions, since they are 
characteristic of the entire system. (Verify this, briefly.) For X1(s)/F1(s), the zeros 
correspond to poles of a system in which you hold m1 in place and then allow m2 to oscillate 
freely.  For X2(s)/F2(s), the zeros correspond to poles for a system where you clamp m2 in 
place and then allow m1 to oscillate freely.  Control for these two systems is known as a 
“collocated” feedback problem, because the actuation is applied (“located”) in the same 
place sensing occurs: one feeds back the position of the mass to which force is applied. 
 

i) From your plots, comments on the relative stability and steady state error you would expect if 
you used a proportional controller with Kp=2,000 for each of the four transfer functions. 
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Problem 3 – Two-mass pulley system. 
 
a) As in the previous problem, use MATLAB to derive the equations of motion for the system 

below, symbolically.  The circles are a pulley with inertia J, such that x2=R2*theta and 
x1=R1*theta of the pulley, as it turns.  Use x1 and x2 as generalized variables. Notes that 
gravity is present here, as well. 

b) For the block diagram in Figure 3, as done in Problem 2b, solve for the missing transfer 
functions and the sign at the summing junction.  

c) Solve symbolically BY HAND for the transfer function from F to X1, X1(s)/F(s). 
d) Solve symbolically BY HAND for the transfer function from F to X2, X2(s)/F(s). 
e) Now, use the values below in your solution to SOLVE FOR THE POLES AND ZEROS for 

your transfer functions from c and d.  What pole(s) will dominate the response? Use 
MATLAB to calculate a 5-second step response for each transfer function, to verify your 
answer. Use only 5 seconds, so the transient response can be seen clearly. 
 

m1=3.36; m2=1; J=0.1; k=686; b=24.5; R2=0.2; R1=0.5;  % SI units 
 

f) Imagine m1 is no longer present and that x1 is the input to the system.  Using your previous 
work, what are the natural frequency and damping ratio of the transfer function from X1 to 
X2, X2(s)/X1(s)?  (Hint, you should get “nice” numbers…) 
 

g) Now, instead imagine k is replaced with a solid cable (infinite stiffness), so the system has 
only one degree of freedom, instead of two.  What is the transfer from F to X2, X2(s)/F(s), 
now?  (Please do not use MATLAB to calculate the equation of motion. Instead calculate the 
total reflected inertia. This is just a first-order system. You should get “nice” numbers…) 

 
HINT: Compare your answer in (g) with the answer in (e).  How does a step response for (g) 
compare with (e)? 

 
 

 

 

 

Figure 3. Schematic (left) and Block Diagram (right) for Problem 3. Note:

€ 

R2 < R1. 
 
 

€ 

R2 < R1
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Problem 4 – For each system and corresponding definition of generalized coordinates (GC’s), 
identify the non-conservative forces (“big Xi”, Ξi) associated with each GC, necessary in using 
the Lagrangian approach to develop equations of motion. 
 
   
 
 

	
  

In	
  a:	
  non-­‐conservative	
  forces	
  and	
  torques	
  include:	
  	
  	
  
tau_m,	
  F2,	
  and	
  Fb	
  (due	
  to	
  dashpot,	
  applied	
  as	
  equal	
  and	
  opposite	
  forces	
  on	
  each	
  mass).	
  

In	
  b:	
  non-­‐conservative	
  forces	
  and	
  torques	
  include:	
  	
  
tau1,	
  tau2,	
  tau3,	
  and	
  F.	
  

In	
  c:	
  non-­‐conservative	
  forces	
  and	
  torques	
  include:	
  	
  
F1,	
  F4,	
  and	
  any	
  damping	
  forces	
  (similar	
  to	
  part	
  a)	
  due	
  to	
  both	
  b2	
  and	
  b3.	
  

In	
  d:	
  non-­‐conservative	
  forces	
  and	
  torques	
  include:	
  	
  
tau1,	
  tau2,	
  and	
  tau3.	
  n1	
  and	
  n2	
  are	
  the	
  numbers	
  of	
  teeth	
  on	
  the	
  gears,	
  as	
  shown.	
  
Note,	
  when	
  theta_m	
  velocity	
  is	
  positive,	
  theta_L	
  velocity	
  is	
  negative!	
  

x	
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Problem 5 – For the two-link system shown,  
a) Write the Jacobian, J, and Jacobian transpose, JT. 
 
Assume we will use relative generalized coordinates, as shown, where theta1 is absolute but 
theta2 is relative to theta1. 
 
b) Write the non-conservative forces, Ξ1 and Ξ2.  Each should involve a mathematical 

expression that includes some subset of actuator torques, tau1 and tau2, and the externally-
applied “disturbance” forces, Fx and Fy, at the end effector. 
 

c) Comment on how the Jacobian (or its transpose) describes the effect the disturbance forces 
will have on each  Ξi, the total non-conservative torque affecting each equation of motion. 

 


