Robot Dynamics and Control - Syllabus

Instructors:

Prof. Katie Byl (lecturer)	katiebyl+179d@gmail.com
Chris Steward (TA)	steward@umail.ucsb.edu
Giulia Piovan (TA)	gpiovan@umail.ucsb.edu
	Prof. Katie Byl (lecturer) Chris Steward (TA) Giulia Piovan (TA)

Corequisites: ECE 130A (or equivalent) or ME 155A (or equivalent).

Website: http://www.ece.ucsb.edu/courses/ECE179/179D_F12Byl/index.html

Lecture: 2-3:15pm Tues. and Thurs., in Phelps 1260. (Note the change of room!!)

Lab: 3-hour session, 6 times during term. Lab section schedule TBA.

Required Text: 1) *Robot Modeling and Control*, by Spong, Hutchinson and Vidyasagar.

Supplemental Texts: 2) Autonomous Mobile Robots, by Siegwart and Nourbakhsh.

- 3) Introduction to Robotics: Mechanics and Control, by Craig.
 - 4) System Dynamics, by Ogata.
 - 5) Modeling, Analysis, and Control of Dynamic Systems, by Palm.

Office Hours: Mon/Wed 3:30-4:30pm, or by email to: katiebyl+179d@gmail.com

Grading: This is a 4-unit course. Grade weighting is given below.

- Homework (25%). There are expected to be 6 homework assignments. Only your top 5 of 6 homework grades will count. (Lowest homework grade is dropped.)
- Laboratory (25%). There are 6 labs, covering 3 project topics. Equal weight will be given to each of 3 prelabs (to be done individually) and 3 short lab reports (to be done in groups). Only your top 5 of 6 lab grades will count. (Lowest lab grade is dropped.) Note: Labs involve sensing and control of Lego NXT robots, built by the TA and programmed by you via MATLAB's Simulink environment. The three projects are:
 - "Beverage-cup pong" robot arm control (Labs 1 and 2)
 - 3-wheeled omni-directional robot motion planning (Labs 3 and 4)
 - Balancing "Segway-style" inverted pendulum (Labs 5 and 6)
- Midterm (20%). The midterm will occur during the usual time and place for lectures. Tentatively, it is scheduled for **Tuesday**, **November 6**.
 Van are allow one (1) single sided sheet of solf prepared potes for the midterm even
- You are allow one (1) single-sided sheet of self-prepared notes for the midterm exam.
 Final Exam (30%). The final exam has been scheduled by the registrar for:
 - Tuesday, December 11, 4-7pm, in Girvetz 2120.

You are allowed two (2) single-sided sheets of self-prepared notes for the final exam.

- **Video:** We hope to video tape lecture and make links available. Video of lectures from the Spring 2011 will be available instead, if this is not practical to update video this term.
- Lecture 4 and 5 Rescheduling. Prof. Byl will be traveling Oct. 6-11. Lectures for Oct. 9 and 11 will be rescheduled, tentatively for Oct. 12 (e.g., during the normal, weekly lab period).

Week	Lab	Lecture Topic	Reading	Other / Due dates
1	-	-		Lab to be scheduled
		L1. (Sep. 27) Introduction. Robot terminology and	Spong: Ch.1-3	first week of class.
		geometry. Kinematics and feasibility.	(skim only)	
2	-	L2. (Oct. 2) Work: force and displacement	Spong: pp. 325-328	Prelab 1 due Oct. 5.
		(review). Mechanical impedance.		
		L3. (Oct. 4) Model elements: DC motors,	Spong: 6.1-6.2, 6.5	
		nonlinearities (e.g., friction), transmissions.		
3	1	L4. (Oct. 12) Single-input single-output (SISO)	Spong: 6.3	MAKE-UP DATE!
	(Oct. 8)	control, pt I: PD and PID, tuning controllers on	Handout L4	Lect. 4 and 5 are
		real-world systems.		Oct. 12, in 3120
		L5. (Oct. 12) SISO control, pt II: Feedforward.	Spong: 6.4	HFH, time TBD.
		Brief overview of state space.		HW 1 due Oct. 10.
4	-	L6. (Oct. 16) The Jacobian, pt I: Virtual work;	Spong: 4.10	
		Jacobians in the force domain.	Handout L6	-
		L7. (Oct. 18) The Jacobian, pt. II: Matrix velocity	Spong Ch. 4	
-		kinematics.		
5	2	L8. (Oct. 23) Wheeled-vehicle dynamics, pt I:	Handout L8	HW 2 due Oct. 22.
	(Oct. 22)	Kinematic constraints; mobility, steerability,		Prelab 3 due Oct.
		maneuverability; wheel types.	0 71 10 5	26.
		L9. (Oct. 25) Wheeled-vehicle dynamics, pt II:	Spong 7.1, 10.5	
(2	Holonomic vs. Nonnolonomic constraints.	Succe 7 2 7 2	Lah 2 due Oat 20
0	(Oct 29)	and not on the Lagrangian, pt 1. Kinetic co-	Spong 7.2-7.5	Lab 2 due Oct. 29.
	(001.27)	motion (EOMs)		n w 5 due Nov. 2.
		I 11 (Nov. 1) The Lagrangian of II: Relative vs.	Spong 7 1 7 3	-
		absolute coordinates: generalized forces: loss	Spong 7.1-7.5	
		terms		
7	4	[No lecture: Nov. 6 is the Midterm, in class.]	-	Midterm (Nov. 6)
	(Nov. 5)	L12. (Nov. 8) State space, pt I: "Segway" robot	Spong 6.6	
		Lagrangian, EOMs.	1 0	
8	-	L13. (Nov. 13) State space, pt II: Controllability	(Spong 6.6)	Lab 4 due Nov. 13.
		and LQR.		Prelab 5, Nov. 16.
		L14. (Nov. 15) Multi-input multi-output (MIMO)	Spong 8.1-8.3	
		control: Controllability, Observability. MATLAB	Handout L14	
		examples.		
9	5	L15. (Nov. 20) MIMO control, pt II: Inner/outer	Spong 9.1-9.3.2	HW 4 due Nov. 19.
	(Nov. 19)	loop control; inverse dyn. (aka "computed torque")	Handout L15	-
1.0		NO CLASS (Thanksgiving)	~ ~ ~ ~ ~ ~ ~ ~	
10	6	L16. (Nov. 27) Task space (Cartesian) dynamics	Spong 9.3.2-9.3.3	HW 5 due Nov. 28.
	(Nov. 26)	and control; force control; impedance control.	Handout L16	-
		L17. (Nov. 29) Hybrid position/force control.	Spong 10.2	
11		reedback linearization.	Hanaout L1/	Lah (dua Diri 2
11	-	L18. Underactuated systems; locomotion; partial	Hanaout L18	Lab 6 due Dec. 3.
		I 10 DEVIEW		II W U UUE DEC. U.
Final	Weelr	$\mathbf{L}_{12}, \mathbf{K}_{2} \in \mathbf{V}_{12} $ Final Exam (D og 11 4 7 m)		Final Fyam
гmals	s week	rmai Dxam (Dec. 11, 4-/pm)		$(D_{00} 11 4.7 mm)$
				(Det. 11, 4-/pm)

Topics and Schedule (Tentative list, subject to some revision throughout the quarter):

Note: Dates for labs are Monday, but exact dates for each lab may change somewhat, compared with above.