Robot Dynamics and Control - Syllabus

Instructors:

Lectur Lab:	re: Prof. Katie Byl (lecturer) Brian Satzinger (TA) Pat Terry (TA)	katiebyl+179d@gmail.com bsatzinger+179d@gmail.com ptx111+179d@gmail.com				
Corequisites:	ECE 130A (or equivalent) or ME 1.	55A (or equivalent).				
Website:	http://www.ece.ucsb.edu/courses/ECE179/179D_S12Byl/index.html (Or, google "Katie Byl" to get to http://www.ece.ucsb.edu/~katiebyl/ Then click on appropriate link under "Teaching".)					
Lecture:	2-3:15pm Tues. and Thurs., in Phelps 2516.					
Lab:	3-hour session, once per week. Lab section assignments TBA.					
Required Tex	tt: 1) Robot Modeling and Con	trol, by Spong, Hutchinson and Vidyasagar.				
Supplementa	 Texts: 2) Autonomous Mobile Robo 3) Introduction to Robotics: 4) System Dynamics, by Ogs 5) Modeling, Analysis, and 6) Mechatronics, by Centini 	ots, by Siegwart and Nourbakhsh. Mechanics and Control, by Craig. ata. Control of Dynamic Systems, by Palm. kunt.				
Office Hours:	Tues/Wed 3:30-4:30pm, or by email	il to: katiebyl+179d@gmail.com >.				

Grading: This is a 4-unit course. Grade weighting is given below.

- Homework (24%). There will be approximately 5-6 homework assignments.
- Laboratory (28%). There will be 7 labs, all involving sensing and control of Lego NXT robots, built by the TA's and programmed by you via MATLAB's Simulink environment. Lab 1 introduces basic concepts and involves only a short pre-lab and write-up. The other 6 labs are broken down into three projects, each lasting two weeks. Each lab will include a short pre-lab assignment. Each project (i.e., after Labs 1,3,5, and 7) will also include a group report. The three laboratory projects are:
 - Beverage-cup pong robot arm control.
 - 3-wheeled omni-directional robot motion planning.
 - Balancing "Segway-style" inverted pendulum.
- Midterm (20%). The midterm will occur during the usual time and place for lectures. Tentatively, it is scheduled for **Tuesday**, **May 8**. You are allow one (1) single-sided sheet of notes for the midterm exam.
- You are allow one (1) single-sided sheet of notes for the midterm exam. $\sum_{i=1}^{n} |E_{i}| = (200(2))^{n}$
- Final Exam (28%). The final exam has been scheduled by the registrar for:
 - **Tuesday, June 12, 4-7pm**, in Phelps 2516.

You are allowed two (2) single-sided sheets of notes for the final exam.

Video: Video of lectures from "Robot Dynamics and Control" in Spring 2011 will be available on the "Lecture Materials" page of the course website. Lectures will not

be identical this year and are intended only as a resource for rare times when you must miss lecture.

Topics and Schedule	(sub	ject to some	revision	throughout	the c	juarter)):
----------------------------	------	--------------	----------	------------	-------	----------	----

10	-	force control; impedance control. L19. Hybrid position/force control. Feedback linearization. L20. Underactuated systems; locomotion; partial feedback linearization (PFL).	Handout L18 Spong 10.2 Handout L19 Handout L20	Einel Exem
10	-	force control; impedance control. L19. Hybrid position/force control. Feedback linearization. L20. Underactuated systems; locomotion; partial	Handout L18 Spong 10.2 Handout L19 Handout L20	
10	-	force control; impedance control. L19. Hybrid position/force control. Feedback linearization.	Handout L18 Spong 10.2 Handout L19	
10	_	force control; impedance control. L19. Hybrid position/force control. Feedback	Handout L18 Spong 10.2	
		force control: impedance control.	Handout L18	
1		L18. Task space (Cartesian) dynamics and control:	Spong 9.3.2-9.3.3	
		inverse dynamics (aka "computed torque")	Handout L17	
9	7	L17. MIMO control, pt II: Inner/outer loop control;	Spong 9.1-9.3.2	
		examples.		
		Controllability, Observability. MATLAB	Handout L16	
-		L16. Multi-input multi-output (MIMO) control:	Spong 8.1-8.3	
8	-	L15. State space, pt II: Controllability and LOR	(Spong 6.6)	
		EOMs.		
		L14. State space, pt I: "Segway" robot Lagrangian.	Spong 6.6	
	-	coordinates; generalized fores; loss terms.		
7	6	L13. The Lagrangian, pt II: Relative vs absolute	Spong 7.1-7.3	
		(EOMs)		
		potential energy; deriving equations of motion		
		L12. The Lagrangian, pt I: Kinetic co-energy and	Spong 7.2-7.3	(y)
6	5	[L11. No "Lecture 11". This is the Midterm.]	-	Midterm (May 8)
		L10. Review for Midterm.	-	
		vs. Nonholonomic constraints.	10,	
5	-	L9. Wheeled-vehicle dynamics, pt II: Holonomic	Spong 7.1, 10.5	
		wheel types.		
		constraints; mobility, steerability, maneuverability:		
		L8 Wheeled-vehicle dynamics nt I: Kinematic	Handout L8	
т	т	kinematics	Spong Cn. T	
4	4	L7 The Jacobian pt II: Matrix velocity	Spong Ch 4	
		the force domain	Handout L6	
	(,	I.6 The Jacobian nt I. Virtual work: Jacobians in	Spong: 4.10	
5	(etc)	overview of state space	Spong. 0.4	
3	3	5 SISO control at II: Feedforward Brief	Spong: 6.4	
	4/16)	systems	nanuout L4	
	Monday	D and DD tuning controllars on real world	Spong: 0.5	
	$\frac{4}{10} - \frac{4}{10} - \frac{10}{10}$	(e.g., includi), transmissions, digital effects	Spange 6.2	
2	Z (Tuesday	L.S. Widdel elements: DC motors, nonlinearities	spong: 0.1-0.2, 0.5	
	4/9)	L2 Model elements: DC motors nonlinearities	Spang: 616265	
	Monday	Mechanical impedance	spong. pp. 525-528	
	$\frac{148}{4/3} -$	Kinematics and leasibility.	(SKIM ONLY)	
1	I (Tuosday	L1. Introduction. Robot terminology and geometry.	Spong: Ch. 1-3	
week		Lecture Topic	Reading	Other
Week	Lab	Lecture Topic	Reading	Other

Note: Labs for "Week N" will occur on Thursday and/or Friday of Week N, plus Monday of "Week N+1".