Nonlinear Phenomena: ECE 183 / ME 169 / PHYS 106

Name

Midterm Exam May 2, 2013

 Problem 0 (5 points) : Turn in one-page cheat sheet.
 Problem 1 (10 points)
 Problem 2 (10 points)
 Problem 3 (15 points)
 Problem 4 (20 points)
 Problem 5 (15 points)
 Problem 6 (25 points)
 Total (out of 100)

The figure above shows fixed points on the line for a 1D system. a) Write a valid expression for f(x) that agrees with the figure. b) Sketch f(x) and draw arrows along the x-axis to indication the direction of flow on the line.

Problem 2

 $f(x) = 25x - x^3$

- a) Find all fixed points for f(x).
- b) Sketch f(x), indicating fixed point locations and their stability.

Above is a return map, P(x), for a 1D discrete-time system (at left), with instances of P(x) for two different values of a (right).

a) Write an expression to solve for the fixed points. (Do not bother to simplify this expression!)

b) Write an expression for the slope of P(x).

c) For what values of *a* does the system have 1 stable and 1 unstable fixed point?

 $f(x) = f_1(x) - f_2(x) = x^4 - 1 + r(x - 1)$ Define: $f_1(x) = x^4 - 1$ and: $f_2(x) = -r(x - 1)$

a) Sketch $f_1(x)$, as a first step.

b) Now, find r_c and x_c^* at the point of bifurcation.

c) Identify the type of bifurcation.

d) Sketch the bifurcation diagram (x^* vs r). Do not try to capture the exact shape, but do clearly illustrate the directions and stability of all branches. (Take care that your bifurcation actually occurs at the r_c and x_c^* location you previously found!)

Above is a sketch of the arctangent function. (Recall that $tan(\delta) \approx \delta$, for small delta.)

 $f(x) = rx + \operatorname{atan}(x)$

a) Solve for r_c and x_c^* at the bifurcation point.

b) Identify the type of bifurcation.

c) Sketch the bifurcation diagram. As in Problem 3: Do not try to capture the exact shape, but do clearly illustrate the directions and stability of all branches. (Take care that your bifurcation actually occurs at the r_c and x_c^* location you previously found!)

$$\mathbf{A} = \left[\begin{array}{rrr} -3 & 5 \\ 1 & 1 \end{array} \right]$$

a) Find eigenvalues and eigenvectors of **A**.

b) Write the linear dynamic equations for the 2 states, x and y.

c) On the axes below, sketch the eigenvectors as solid lines.

d) Then, sketch nullclines (i.e., $\dot{x} = 0$ and $\dot{y} = 0$) as dashed lines.

e) And sketch flow pattern (sample trajectories) in 2D phase space.

