Midterm Exam
 May 2, 2013

Problem 0 (5 points) : Turn in one-page cheat sheet.	
Problem 1 (10 points)	
Problem 2 (10 points)	
Problem 3 (15 points)	
Problem 4 (20 points)	
Problem 5 (15 points)	
Problem 6 (25 points)	

The figure above shows fixed points on the line for a 1D system.
a) Write a valid expression for $f(x)$ that agrees with the figure.
b) Sketch $f(x)$ and draw arrows along the x-axis to indication the direction of flow on the line.

Problem 2

$f(x)=25 x-x^{3}$
a) Find all fixed points for $f(x)$.
b) Sketch $f(x)$, indicating fixed point locations and their stability.

Problem 3

$$
P(x)=x_{k+1}=a x_{k}^{2}+1
$$

Above is a return map, $P(x)$, for a 1D discrete-time system (at left), with instances of $P(x)$ for two different values of a (right).
a) Write an expression to solve for the fixed points. (Do not bother to simplify this expression!)
b) Write an expression for the slope of $P(x)$.
c) For what values of a does the system have 1 stable and 1 unstable fixed point?

Problem 4
$f(x)=f_{1}(x)-f_{2}(x)=x^{4}-1+r(x-1)$
Define: $f_{1}(x)=x^{4}-1$ and: $f_{2}(x)=-r(x-1)$
a) Sketch $f_{1}(x)$, as a first step.
b) Now, find r_{c} and x_{c}^{*} at the point of bifurcation.
c) Identify the type of bifurcation.
d) Sketch the bifurcation diagram (x^{*} vs r). Do not try to capture the exact shape, but do clearly illustrate the directions and stability of all branches. (Take care that your bifurcation actually occurs at the r_{c} and x_{c}^{*} location you previously found!)

Problem 5

Above is a sketch of the arctangent function.
(Recall that $\tan (\delta) \approx \delta$, for small delta.)
$f(x)=r x+\operatorname{atan}(x)$
a) Solve for r_{c} and x_{c}^{*} at the bifurcation point.
b) Identify the type of bifurcation.
c) Sketch the bifurcation diagram. As in Problem 3: Do not try to capture the exact shape, but do clearly illustrate the directions and stability of all branches. (Take care that your bifurcation actually occurs at the r_{c} and x_{c}^{*} location you previously found!)

Problem 6

$\mathbf{A}=\left[\begin{array}{cc}-3 & 5 \\ 1 & 1\end{array}\right]$
a) Find eigenvalues and eigenvectors of \mathbf{A}.
b) Write the linear dynamic equations for the 2 states, x and y.
c) On the axes below, sketch the eigenvectors as solid lines.
d) Then, sketch nullclines (i.e., $\dot{x}=0$ and $\dot{y}=0$) as dashed lines.
e) And sketch flow pattern (sample trajectories) in 2D phase space.

