Nonlinear Phenomena: Recitation 1

Discussion Problems, April 5 and 8, 2013.

Discussion 1 (§2.2 : Fixed Points and Stability)

Strogatz Problem 2.2.1.

Strogatz Problem 2.2.8.
To discuss: Consider also a generalized case, in which each of the three fixed points $(x=-1, x=0$, and $x=2)$ can be either black, white, white-black, or black-white. What is required for $\dot{x}=f(x)$ to be a continuous function? Note that if $f(x)$ is piece-wise, finding a variety of solutions becomes trivial. How can one systematically create a continuous function, for any case that satisfies your earlier requirement(s)?

Discussion 2 (§2.4: Linear Stability Analysis)

Strogatz Problems 2.4.4, 2.4.7.

Discussion 3 (§8.7 : Poincaré Maps)

For each difference equation: sketch the return map, find all fixed points, classify their stability, and sketch cobweb graphs of x_{n}. For any stable fixed point, define all initial x_{0} values that converge to this fixed point. To discuss: If no fixed points are stable, must any initial condition eventually become unbounded? Why or why not?
i) $x(n+1)= \begin{cases}-1+(3 / 2) x(n), & \text { if } x(n)<4 \\ 5-(3 / 2) x(n), & \text { otw }\end{cases}$
ii) $x(n+1)=2 \cdot \operatorname{atan}(x(n))$
iii) $x(n+1)=-2 \cdot \operatorname{atan}(x(n))$

Discussion 4 §2.5 : Existence and Uniqueness)

Strogatz Problem 2.5.5.

