The IR Scout is a highly durable sensor package that wirelessly transmits high-quality, thermal images to a remote user. The system is composed of a throwable sensor package and a laptop that displays the thermal images. The device requires minimal user operation: simply turn it on and throw it into the area of interest. Once the sensor package reaches a stable position, the appropriate cameras take still shots that display the thermal images. The device then performs the necessary image processing to display multiple images neatly on the user interface. With these features, the IR Scout provides first responders with knowledge of a hazardous environment prior to entering, regardless of visibility.

Throwable Sensor: Composed of 12 FLIR Lepton Cameras, an accelerometer, a RN-XV WiFly Module, a Tiva C microcontroller, a TI Fuel Tank Booster Pack, and a 3.7 V Lithium-ion Battery

User Interface: Uses MATLAB to automatically receive, process, and display the images sent from the throwable sensor

FLIR Lepton Thermal Camera
- Remarkably small Long Wave Infrared camera
- 60x80 pixel resolution

FreeScale Semiconductor MMA8452Q Accelerometer
- Communicates with microcontroller using I2C
- 3-axis, ±2g resolution

Microchip RN-XV WiFi Module
- Sets up a network for the laptop
- Transmits and receives data from the laptop using UDP

Texas Instruments Tiva C Launchpad
- Responsible for processing all sensor data
- Clockspeed of 80 MHz

Texas Instruments Fuel Tank
- Regulates the battery voltage to 3.3 V and 5 V
- Charges the battery via a micro-USB port
- 3.7 V Lithium-Ion Battery
- Capacity of 1200 mAh
- Active battery life of approximately 30 min

The final product is a combination of the outer shell designed by a 5-person ME team as well as the internal electronics designed by us.

Future Goals
- Convert the MATLAB user interface into a mobile application. This will allow for a more compact, practical product.
- Expand on the number of cameras in the throwable sensor package for an increased field of vision.
- Combine both visual and thermal cameras in the device and then use FLIRs MSX blending algorithm to give a more detailed view
- Add video streaming for one camera module at a time.
- Rotate the images so that they are all oriented correctly

Acknowledgments
We would like to thank the following mentors in helping us accomplish this project: Ilan Ben-Yaacov, Louis Tremblay, Marcel Tremblay and everyone at FLIR Systems. We would also like to thank Kai Moncino, Brenden McMorrow, Joe de Rutte, Benjamin Swan, and Riley Borrall. Without their mechanical engineering work this project would not have been possible.