
 

ECE 594A – Introduction to Nanoelectronics – Assignment 2 

Deadline: 5/31/2013 Friday by 5 PM.  

Most problems need to be solved by MATLAB. Hand in your report (hand-written or printed) to 

Jiahao Kang in HFH 2152C and email all your MATLAB codes (.m) and figures (.fig) in a 

compressed achieve (.zip, .rar, .7z, etc.) to jiahao_kang@ece.ucsb.edu.  

 

Problem 1 Quantum Well 

In the lecture on 5/14/2013, we have learnt how to solve the energy states and wave functions of a 

1D infinite quantum well numerically. Now we will proceed to the calculation of electron density 

for the system using MATLAB. In the single-electron approximation, the wavefunction or the 

density of the single electron represents the average distribution of the system. Therefore, density 

of the electrons can be estimated by the wavefunction of single electron (in the unit of #/length) 

 or 

 

where Ni ,N(E) stands for the number of electrons in the ith state or the state with energy E of the 

system, and ψi(x), ψE(x) is the wavefunction of the single electron corresponding to the ith or energy 

E state. With regard to the Fermi-Dirac distribution, the number of the electrons in a specific state 

can be derived by 

 or  

where Ei is the energy of the ith state, Ef is the Fermi level of the system. Remember that the 

wavefunctions have to be normalized before we calculate the density.  

(1) Since we have got the eigenstate of a one-dimensional infinite potential well, please calculate 

the number of the electrons in each state, when we set the Fermi level exactly at the eigenenergy of 

the second state and consider the spin factor equals 2. Assume that the cross section has an area of 

10−18 m2 and neglect the cross section quantization. (Take kbT≈0.0259 eV)  

(2) Use the wavefunction numerically derived in the previous problem, and calculate the electron 

density of the one-dimensional infinite potential well. Plot the result along the x-axis. Check the 

lecture notes for the constant parameters.  

Save the program as ‘Problem_1.m’, and save the figure as ‘Problem_1.fig’. 

  



 

Problem 2 Band Diagram of MOS 

In this task, we will solve a real case for MOSFET using MATLAB. Recall the scheme that discretize 

the space and set the total length for our simulation region as [0,100) nm. The region is plotted 

below:  

 

By taking the density of state in metal approaching infinity and a proper work function, we can 

assume that the potential at the interface between oxide layer and metal follows Vg applied to the 

gate. And we can take the region large enough to neglect the variation of the potential at the right 

edge of simulated region.  

That is to say, the intrinsic Fermi level for the semiconductor satisfies:  

𝐸𝐹𝑖|𝑥=0 = −𝑉𝑔 

𝜕𝐸𝐹𝑖

𝜕𝑥
|𝑥=100 nm = 0 

Therefore the metal gate does not need to be included into the simulated region, but only considered 

as a boundary condition for Poisson’s equation.  

(1) Derive the discretized Poisson equation by the discretization methods taught in lecture. Note 

that the number of carriers inside the oxide layer is zero.  

(2) Derive the discretized Jacobi matrix for the function equivalent to the equation above.  

(3) Use the Jacobi matrix and the function to derive the profile of the band diagram and carriers 

density under Vg=0. Na=5e17 cm-3; Nd = 0. Check the lecture notes for other constants. Plot the 

figure of Ec, Ev, Ef 𝑣𝑠. 𝑥 and n, p 𝑣𝑠. 𝑥. 

(4) Find VFB, VT under these assumptions and compare them with the theoretical results.  

(5) Define space charge region from the interface between oxide layer and substrate to the point 

where the density of carrier rise to half of the doping concentration. Plot the width of the space 

charge region versus the gate voltage. Explain your result. 

Save the program as ‘Problem_2.m’ that plots as required, and save the figure as ‘Problem_2.fig’.  

  



 

Bonus to Problem 2 

Within the scheme in the previous problem, we can use a quasi-static approximation to sketch the 

low frequency C-V characteristics for the MOSFET. By the approximation, we assume that the 

charge varies with the gate voltage fast enough to keep the device in equilibrium. So to achieve the 

C-V characteristics, we just need to apply a gate voltage with a small difference. With the help of 

the charge and voltage difference, the capacitance for small signals can be easily yielded by  

𝐶′ =
𝜕𝑞′

𝜕𝑉𝑔
=

Δ𝑞′

Δ𝑉𝑔
 

where q’ can be derived by summing up all charge in the semiconductor region. Here “ ’ ” indicates 

the variable per area. Now  

(1) Please derive the theoretical result of capacitance in strong inversion and accumulation region.  

(2) Use your MATLAB code to show the C-V characteristics. 

Save the program as ‘Problem_2b.m’ that plots as required, and save the figure as ‘Problem_2b.fig’.  

 

Problem 3 Lattice of Graphene 

Graphite sheet is a sheet made of one single carbon atom layer. In MATLAB, Use the plot command 

to show the positions of all atoms within a radius of 9Å of the atoms (any one of them) in the chosen 

unit cell of a graphene sheet (assume the unit cell have atoms in (0,0) and (acc,0), where acc=1.44Å). 

Mark all the positions with blue ‘*’ except the chosen ones in the unit cell with a red ‘*’. You should 

generate a figure similar to one of below: 

  

Hints: plot command takes the syntax mostly as “plot(x, y, ‘line_mark_color_expression’)”. 

Here the x and y stands for the vectors of coordinate of your points. line_mark_color_expression 

specifies the marks, lines, and colors.(Use help <command> in MATLAB to see the details.) 

Use the unit cell and the unit lattice vector will help you to draw it. 

Save the program as ‘Problem_3.m’ that plots as required, and save the figure as ‘Problem_3.fig’.  

  



 

Problem 4 Lattice of Silicon 

In MATLAB, ‘plot3’ is used to show the data in 3D space. Use plot3 command to draw the positions 

of the atoms in the silicon lattice by the mark ‘*’. Assume that we have a cube of edge length 

a=4asilicon, where asilicon ≈5.43Å is the edge length of a unit cell in silicon.  

Hint: “plot3(x,y,z,s)” plots in 3d-space through the points whose coordinates are the elements of x, 

y and z, where x, y and z are three vectors of the same length, s is a 1, 2 or 3 character string made 

from the characters listed under the plot command. See “help plot3” for detail. 

(a) Please plot the unit cell. You should have a similar figure as below: 

   

(b) Repeat the unit cell in 3 directions. Then obtain the figure for silicon lattice in (110) and (111) 

plane (use ‘view([h l k])’ command). 

The example figures below give a view in (100) plane and random view in 3D. 

   

Save the program as ‘Problem_4.m’ that plots as required, and save the figure as ‘Problem_4.fig’.  

  



 

Problem 5 Band Structure of Graphene Nanoribbons 

Use the method taught in class, generate the band structure of the following graphene nanoribbons 

(GNR) by MATLAB. Measure the band gaps.  

 

GNR 1 – armchair – 12 carbon atoms in width – edges are unsaturated 

GNR 2 – armchair – 13 carbon atoms in width – edges are saturated by hydrogen atoms 

 

Bonus to Problem 5 

(a) Repeat Problem 5 for a zigzag GNR (12 carbon atoms in width – edges are unsaturated):  

 

(b) Use the method taught in class, generate the band structure of graphene along kx-ky plane by 

MATLAB. You may use ‘surf’ or ‘mesh’ to generate a surface plot. The result should be similar to 

the figure below: 

 

Save the program as ‘Problem_5b.m’ that plots as required, and save the figure as ‘Problem_5b.fig’.  


