ECE 594A
INTRODUCTION TO NANOELECTRONICS
LECTURE 1

Kaustav Banerjee
kaustav@ece.ucsb.edu
OUTLINE

• Week 1: March 29/31
 – Current Status of Microelectronics
 – Is Nanoelectronics the Future?
 Reading:
 - Chapter 1 of Text
 - *There is Plenty of Room at the Bottom*, R. P. Feynman, APS Meeting, Dec. 1959.
 - ITRS Latest Edition

• Week 2: April 5/7 (Basic Quantum Phenomena)
 – Waves, particles, wave-particle duality
 – Wave mechanics: Schrodinger’s equation, potential wells, harmonic oscillator
 – Reflection, transmission and tunneling
 – Atoms and atomic orbitals
 Reading:
 - Chapter 2 and 3 of Text
OUTLINE

• **Week 3: April 12/14 (Basics of Nanoelectronic Materials)**
 – Semiconductors: crystal lattices, bonding, energy bands
 – Materials for Nanoelectronics
 – Semiconductor heterostructures
 – Low dimensional structures

 Reading:
 - Chapter 4 of Text

• **Week 4 and 5: (Nanoscale Transport)**
 – Electron transport in Nanostructures
 – Thermal transport in Nanostructures
 – Transport models and simulation techniques

 Reading:
 - Chapter 6 and 7 of Text
OUTLINE

- **Week 6: May 3, 5 (Carbon Nanomaterials)**
 - Graphene and carbon nanotubes

 Reading:
 - Chapter 4 of Text

- **Week 7 and 8: (Nanofabrication and Characterization Techniques)**
 - Nanofabrication principles
 - Techniques using photons, charged beams, scanning probes, replication, pattern transfer etc
 - Indirect nanofabrication
 - Bottom-up techniques: growth, self-assembly etc
 - Nano characterization: Raman, XPS, AFM, TEM, SEM etc

 Reading:
 - Chapter 5 of Text
OUTLINE

• Week 9 May 24, 26 (Applications-1)
 – Active Electronic Devices: FETs, TFETs, RTD, SET etc
 – Novel interconnects and passives

 Reading:
 - Chapter 8 of Text

• Week 10: May 31, June 2 (Applications-2)
 – Energy conversion: and storage: photovoltaics, Other natural energy sources
 – Energy conversion: and storage: thermoelectrics, battery
 – NEMS

 Reading:
 - Chapter 8 of Text