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Nanoscale device modeling: the Green’s function method
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The non-equilibrium Green’s function (NEGF) formalism provides a sound conceptual ba-
sis for the devlopment of atomic-level quantum mechanical simulators that will be needed
for nanoscale devices of the future. However, this formalism is based on concepts that are
unfamiliar to most device physicists and chemists and as such remains relatively obscure.
In this paper we try to achieve two objectives: (1) explain the central concepts that define
the ‘language’ of quantum transport, and (2) illustrate the NEGF formalism with simple ex-
amples that interested readers can easily duplicate on their PCs. These examples all involve
a short n++–n+–n++ resistor whose physics is easily understood. However, the basic for-
mulation is quite general and can even be applied to something as different as a nanotube or
a molecular wire, once a suitable Hamiltonian has been identified. These examples also un-
derscore the importance of performing self-consistent calculations that include the Poisson
equation. TheI –V characteristics of nanoscale structures is determined by an interesting
interplay between twentieth century physics (quantum transport) and nineteenth century
physics (electrostatics) and there is a tendency to emphasize one or the other depending on
one’s background. However, it is important to do justice to both aspects in order to derive
real insights.
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1. Introduction

MOS transistors with channel lengths as small as 10 nm are now being actively studied both theoretically
and experimentally [1]. At the same time recent demonstrations of molecular switching make molecular
electronic devices seem a little closer to reality [2]. It is clear that quantitative simulation tools for this new
generation of devices will require atomic-level quantum mechanical models. The non-equilibrium Green
function (NEGF) formalism (sometimes referred to as the Keldysh or the Kadanoff–Baym formalism) pro-
vides a sound conceptual basis for the devlopment of this new class of simulators. 1D quantum devices like
tunneling and resonant tunneling diodes have been modeled quantitatively using NEMO [3] which is based
on the NEGF formalism. Although the transport issues in MOS transistors or molecular electronics are com-
pletely different, the NEGF formalism should provide a suitable conceptual framework for their analysis as
well. However, this formalism is based on concepts that are unfamiliar to most device physicists and chemists
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Fig. 1.A, A device in equilibrium; B, self-consistent procedure for the analysis of electronic devices in equilibrium. ‘Poisson’ is written
within quotes as a reminder that it may need to be supplemented with a exchange-correlation potential.

and as such remains relatively obscure despite the obvious value of a fundamentally sound approach on which
practical simulation tools for nanoscale devices can be based. In this paper we try to achieve two objectives:
(1) explain the central concepts that define the ‘language’ of quantum transport, and (2) illustrate the NEGF
formalism with simple examples that interested readers can easily duplicate on their PCs. The numerical
results presented here (Figs5, 9, 13) were all obtained on a laptop computer and the author will be glad to
share his MATLAB programs, typically 40 lines long, with interested readers. These examples all involve a
short n++–n+–n++ resistor whose physics is easily understood. Their primary purpose is to illustrate how
the NEGF formalism is applied to a real device and leads to physically sensible results. The basic formulation
is quite general and can even be applied to something as different as a nanotube or a molecular wire.

Most device physicists are familiar with the Schrödinger–Poisson solver. So let us start by recapitulating
how the Schrödinger–Poisson solver works for a device in equilibrium (Fig.1A). The first step is to identify
a suitable Hamiltonian,H , that provides an adequate description of the isolated device. For example, if the
device operation involves only the electrons in a parabolic conduction band then we could use the effective
mass HamiltonianH ≡ −(h̄2/2m)∇2. This is what we will use for our illustrative examples in this paper, but
the basic formulation could just as well be used with more complicated Hamiltonians like the sp3s∗ Hamil-
tonian commonly used to provide an accurate description of the valence band or say the 6-31G∗ Hamiltonian
used for molecular conductors. When the device is connected to the contacts there is some charge transferred
into or out of the device, which gives rise to a potential,U (r ), that has to be calculated self-consistently.
The Schrödinger–Poisson solver (Fig.1B) iterates between thePoisson equationwhich gives us the potential
U (r ) for a given electron densityn(r ) relative to that required for local charge neutrality (which is equal to
the ionized donor density,ND(r ), in an n-type semiconductor)

∇ · (ε∇U ) = q2
[ND − n] (1.1)

and the law ofequilibrium statistical mechanicswhich tells us that the electron densityn(r ) for a given
potential profileU (r ) is obtained from

n(r ) =
∑
α

|9α(r )|
2 f0(εα − µ) (1.2)

by filling up the eigenstates9α(r ) of the Schrödinger equation

[H +U ]9α(r ) = εα9α(r ) (1.3)
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according to the Fermi function

f0(E − µ) ≡ (1+ exp[(E − µ)/kBT])−1 (1.4)

µ being the Fermi level. This is the basic approach that has been widely used to model MOS capacitors. Some
authors [4] have supplemented the Poisson potentialU (r ) with an exchange-correlation potentialUxc(r )
which accounts for the ‘hole’ that surrounds an individual electron in a conductive medium. This is quite
common among quantum chemists [5] who have developed fairly sophisticated approaches for determining
Uxc(r ). In this paper we will not address this issue and simply use the Poisson (or Hartree) potential, with the
reminder that it may need to be supplemented with a suitable exchange-correlation potential to account for
electron–electron interactions. This self-consistent field approach should provide an adequate equilibrium
model for nanoscale devices, unless they happen to be in the ‘Coulomb blockade’ regime. Let me briefly
elaborate on what this means.

An electronic state localized in a sphere of radiusR has a single-electron charging energy of approximately
q2/4πεR which is∼25 meV if R = 5 nm andε = 10ε0. If this charging energy exceeds both the thermal
energykBT and the level broadening due to the connection to the surroundings, then one could be in a regime
dominated by single-electron charging effects that is not described well by the self-consistent field method
even at equilibrium. One well-known example of this is the fact that donor or acceptor levels are occupied
according to a modified Fermi function (ν: level degeneracy)

f (E − µ) ≡

(
1+

1

ν
exp[(E − µ)/kBT]

)−1

rather than the actual Fermi function (cf. eqn (1.4)). This elementary result, familiar to every device scientist,
does NOT ordinarily follow from the NEGF formalism without special effort because impurity levels are
both localized and weakly coupled. Similar issues could arise in nanoscale devices with weak coupling
to contacts (such as the floating gate in a flash memory device) and such devices may require treatments
that go beyond the standard NEGF formalism to take single-electron charging effects into account. In this
paper we will not discuss this ‘Coulomb blockade’ regime any further and assume that the energy levels are
sufficiently delocalized that electron–electron interactions can be modeled with an appropriate self-consistent
field. However, it is important to remember that the NEGF, with all its impressive sophistication, does not
automatically include ‘everything’.

The problem we wish to address in this paper is that of a device connected to two contacts with two
different Fermi levelsµ1 andµ2 (Fig.2). What is the electron density,n? We can no longer use eqn (1.2) since
there are two different Fermi levels. It would seem that the energy levels in the device would be occupied
with a probability fαwhich has a value intermediate between the source Fermi functionf0(εα −µ1) and the
drain Fermi functionf0(εα − µ2):

n(r ) =
∑
α

9α(r )9
∗
α(r ) fα. (1.5)

However, the general answer is more complicated than that. Different states can be occupied in a correlated
manner described by a density matrix,ραβ :

n(r ) =
∑
α,β

9α(r )ψ
∗
β(r )ραβ . (1.6)

The central issue in non-equilibrium statistical mechanics is to determine thedensity matrixραβ ; once
found, all quantities of interest (charge, current, energy current etc) can be calculated. Since this concept is
unfamiliar to most device physicists, let us elaborate a little further.
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Fig. 2. A, A device driven out of equilibrium by two contacts with different Fermi levelsµ1 andµ2; B, self-consistent procedure for
determining the density matrixρ from which all quantities of interest (electron density, current etc) can be calculated.

Fig. 3.A ballistic conductor connected to two contacts with different Fermi levelsµ1 andµ2.

1.1. The density matrix and the current operator

The distinction between an occupation probabilityfα and a density matrixραβ can be appreciated by
considering a simple 1D ballistic conductor connected to two contacts with Fermi levelsµ1 andµ2 (Fig. 3).
One of the celebrated results of mesoscopic physics [6–8] is that the conductance of such a ballistic conductor
is quantized:

g =
I

[µ1− µ2]/− q
=

2q2

h
. (1.7)
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Equation (1.7) is derived simply as follows. The eigenstates of a 1D conductor with periodic boundary
conditions can be written as (L: length of conductor)

9+k(x) = e+ikx/
√

L, 9−k(x) = e−ikx/
√

L (1.8)

with

ε+k = ε−k = Ec + (h̄
2k2/2m). (1.9)

How are these states occupied? Given the complicated nature of the interfaces at the two ends the answer is
not obvious but the large body of experimental and theoretical work on point contacts in semiconductors since
1988 has established quite clearly that the+k states are occupied primarily by electrons coming from the left
contact while the−k states are occupied primarily by electrons coming from the right contact. Consequently
the occupation factors for the+k and−k states are given approximately by the Fermi functions for the left
and right contacts respectively:

f+k = f0(εk − µ1), f−k = f0(εk − µ2). (1.10)

Noting that the probability current carried by these plane wave eigenstates (eqn (1.8)) is given by

J+k(x) = (h̄k/mL), J−k(x) = (−h̄k/mL) (1.11)

we obtain the net current as

I = 2 (for spin)∗ (−q)
∑
k>0

J+k f0(εk − µ1)+ J−k f0(εk − µ2)

= (−2q)
∑

k

h̄k

mL
[ f0(εk − µ1)− f0(εk − µ2)].

Converting the summation into an integral using periodic boundary conditions with the usual prescription∑
k →

∫
dkL/2π [9],

I =
−2q

h

∫
+∞

0
dεk[ f0(εk − µ1)− f0(εk − µ2)] =

−2q

h
[µ1− µ2]

from which eqn (1.7) for the conductance follows readily.
Our purpose in outlining this textbook derivation of the quantized conductance of ballistic conductors is

to illustrate an important conceptual point [10]. The form of the eigenstates given by eqn (1.8) is not unique.
The ‘+k’ and ‘−k’ states have the same energy so that any linear combination of the two is also an eigenstate.
We could just as well have written the eigenstates as

9c,k(x) =
√

2/L coskx and 9s,k(x) =
√

2/L sinkx. (1.12)

However, no matter how these states are occupied individually, the net current would be zero, since both the
sine and cosine states are equal superpositions of ‘+k’ and ‘−k’ states and carry zero-current individually
(Jc,k = Js,k = 0):

1= 2 (for spin)
∑
k>0

Jc,k fc,k + Js,k fs,k = 0. which is incorrect

Where is the fallacy in this reasoning? The answer is that if we choose to use the cosine and sine states, we
cannot calculate the current from occupation probabilities since the current operator is not diagonal in this
representation. To see what this means, we first note that in the plane wave representation the current operator
Jop is given by

[Jop]pw =

[
+k −k

h̄k/mL 0
0 −h̄k/mL

]
. (1.13a)
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Next we transform the current operator into the cosine and sine representation through a unitary transforma-
tion using the transformation matrix [V] whose columns represent the old basis(‘ pw’ : +k,−k) in terms of
the new basis(‘cs’ : c, s):

[V] =
1
√

2

[
1 1
+i −i

]
.

We obtain

[Jop]cs = [V][Jop]pw[V]
+
=

[
0 −i h̄k/mL

+i h̄k/mL 0

]
. (1.13b)

The diagonal elements in this representation are indeed zero indicating that neither state carries any current
by itself. But if they are occupied in a correlated manner as reflected in the off-diagonal elements of the
density matrix, then there could be a net current. In the plane wave representation, the density matrix is
diagonal with the diagonal elements given by the occupation probabilitiesfα:

[ρ]pw =

[
f+k 0
0 f−k

]
(1.14a)

so that in the cosine–sine representation

[ρ]cs= [V][ρ]pw[V]
+

=
1

2

[
f+k + f−k −i ( f+k − f−k)

i ( f+k − fk) f+k + f−k

]
. (1.14b)

The current is given byI = 2 (for spin)× (−q)× Trace(ρ Jop) and we get the same result in either represen-
tation (‘pw’ or ‘ cs’). This is only to be expected since the trace is invariant under a unitary transformation
and thus remains the same in any representation. However, the point to note is that the current in the ‘cs’
representation arises from theoff-diagonalelements of the density matrix and the current operator, rather
than the diagonal elements. These elements do not have an intuitive physical meaning, unlike the diagonal
elements which are simply the occupation factorsfα. As long as the current is carried by the diagonal terms
we can use a semiclassical Boltzmann-like picture. However, if the ‘action’ is in the off-diagonal elements
then we need a more general quantum framework. For nanoscale devices, it is important to have the flexibility
to use arbitrary representations since one may not knowa priori which representation will diagonalize the
density matrix. The key problem then is tofind the density matrixρ in some suitable representation.

One last point before we proceed. We have mentioned above that the electron density can be calculated
from the density matrix using eqn (1.6). We could regard eqn (1.6) as a special case of a unitary transforma-
tion into a real space representation:

[ρ]realspace= [V][ρ][V]
+. (1.15)

The transformation matrix[V] is obtained from the amplitudes of the wavefunctions9α at points ‘r ’ in real
space:

[V]r,α = 9α(r )
√
� (1.16)

where� is the volume of an individual cell. The factor of
√
� comes from the process of discretization of the

real space coordinate (as we do in the method of finite differences) which is conceptually convenient since
it makes the transformation matrix finite-sized. In a discrete representation the normalized wavefunction in
eqn (1.8) would be written as

9+k(x) = e+ikx/
√

N instead of 9+k(x) = e+ikx/
√

L

N being the number of points in a discrete lattice of lengthL. A factor of
√

L/N =
√

a (a: length of the
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unit cell) is needed to convert from the continuous to the discrete representation. Substituting eqn (1.16) into
eqn (1.15),

ρ(r, r ′) = �
∑
α,β

9α(r )9
∗
β(r
′)ραβ → �n(r ) = [ρ(r, r ′)]r ′=r . (1.17)

The electron densityn(r ) (see eqn (1.6)) is just the diagonal element(r ′ = r ) of the density matrix in real
space (divided by the volume of an individual cell). In other words, it is not only that we can calculate the
electron density from the density matrix: a more powerful viewpoint is that the density matrixis the electron
density (within a constant factor�). Like all quantum mechanical concepts it can be expressed in different
representations. In some representation (like the plane wave representation for the ballistic conductor) the
density matrix is diagonal; in other representations it is not diagonal. But in any representation the diagonal
element tells us the number of electrons occupying a particular basis state in that representation. If we use
the real space representation, then the diagonal elements tell us the number of electrons at different points in
real space, which is the electron densityn(r ) times�.

Outline: In quantum transport theory, the density matrix is the central quantity from which all quantities of
interest can be obtained. For example, the electron densityn(r ) is obtained from the diagonal elements in the
real space representation, while the current is obtained fromI = (−q) Trace(ρ Jop). The problem then is
to find the density matrix in a chosen representation. For this it is not enough just to know the details of the
device through(H +U ); we also need to know how the device is coupled to the two contacts and the scatter-
ing processes that are effective within the device. This information is contained in the self-energy functions
61,62 and6S (Fig. 2). Given all of this information

(
H,U, 61, 62, 6S, µ1 andµ2

)
, the NEGF formalism

provides clear well-defined relations that can be used to calculate the density matrix from which the elec-
tron density and current can be obtained. We will not derive any of the equations, since rigorous derivations
based on the second quantized formalism are available in the literature [11]. Instead we will try (1) to mo-
tivate the basic equations by showing that they make perfect sense if we use a representation in which the
relevant quantities are diagonal and (2) to illustrate these equations with simple MATLAB-based examples
that interested readers can conveniently duplicate on a PC. An important ingredient in these calculations is
that the transport equation is solved self-consistently with the Poisson equation. TheI –V characteristics of
nanoscale structures is determined by an interesting interplay of transport physics with electrostatics and it
is important to do justice to both aspects if we are to derive real insights.

The numerical examples we present are all centered around a short n++–n+–n++ resistor whose physics
is easily understood. Our primary purpose is to show that the NEGF formalism leads to physically sensible
results for this simple device. However, the basic formulation is quite general and can even be applied to
something as different as a molecular wire or a nanotube [12]. For any device the first step is to choose a
suitable representation which can be used to write down the quantitiesH,U, 61, 62, 6S (see Fig.2) in the
form of matrices. These are the matrices that contain all the physics of the problem at hand. Given these
matrices, the procedure for calculating the density matrix (and hence the electron density and current) is the
same for every device, be it a molecule or a nanotube or an n++–n+–n++ resistor.

We will start by describing the specific choice of representation that we will be using for our examples
(Section2). We will then discuss the procedure for calculating the equilibrium potential profile and electron
density, first in terms of wavefunctions and then in terms of Green’s functions in order to illustrate their
relationship (Section3). Next we will discuss devices driven out-of-equilibrium by an applied bias, neglecting
any scattering processes inside the device (6s = 0, Section4). Finally we will discuss approaches that can
be used to incorporate scattering processes into the model (6S 6= 0, Section5).
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Fig. 4.A, 1D device with a large (effectively infinite) cross-section; B, we use the eigenstate representation for the transverse dimensions
(y–z) but a discrete real space lattice for the longitudinal direction.

2. Choice of representation

In formulating a theory of quantum transport we have a choice of what representation to use and the
optimum choice depends on the problem at hand. A representation based on eigenstates is often convenient
for analytical calculations since the Hamiltonian is diagonal. On the other hand, a real space representation
is intuitively more appealing since most of us ‘live’ in real space. In dealing with 1D devices (Fig.4A), we
find it convenient to use the eigenstate representation for the transverse dimensions(y–z) but a discrete real
space lattice for the longitudinal direction. We can separate the overall HamiltonianH into a longitudinal
part HL and a transverse partHT (H +U = HL + HT ):

HL ≡ Ec −
h̄2

2m

d2

dx2
+U (x) (2.1)

HT ≡ −
h̄2

2m

(
d2

dy2
+

d2

dz2

)
+Ut (y, z). (2.2)

For devices with a large (effectively infinite) cross-section, it is common to ignore the transverse confining
potentialUt (y, z) and use periodic boundary conditions in that direction since the real boundary conditions
are believed to have minimal effect on the observed properties. The transverse eigenstates are then given by
plane waves (S: transverse cross-sectional area)

χk(ρ) = exp(i k · ρ)/
√

S (2.3)

HTχk = εkχk with εk = h̄2k2/2m, (2.4)

wherek andρ are both 2D vectors in they–z plane.
For the longitudinal Hamiltonian we use a discrete lattice in real space. To find the matrix representation

for HL the simplest procedure is to use a finite difference approximation for the second derivative in eqn (2.1):

[HLφ]n = −tφn−1+ (Ec + 2t +Un)8n − tφn+1,
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wheret ≡ h̄2/2ma2 andUn ≡ U (xn). This means that the matrix representing ‘HL ’ appears as follows:

HL= |1〉 |2〉 . . . |N − 1〉 |N〉
|1〉 Ec + 2t +U1 −t 0 0
|2〉 −t Ec + 2t +U2 0 0

...
...

...
...

|N − 1〉 0 0 Ec + 2t +UN−1 −t
|N〉 0 0 −t Ec + 2t +UN .

(2.5)

It can be shown that if the lattice spacing ‘a’ is chosen to be small enough that ‘t ’ is greater than the energy
range of interest, then the discrete lattice representation (often called the tight-binding model) yields fairly
accurate results. For an infinitely long uniform structure(Un = 0) it yields a dispersion relation

E = Ec + 2t (1− coska) (2.6)

which reduces to a parabolic bandE = h̄2k2/2m for small ‘ka’.
The overall basis functions can be labeled as (k,n) as shown in Fig.4B. The elements of the matrix

representing(H +U ) can be written as

[HL + HT ]n,k;n′,k′ = ([HL ]n,n′ + εk)δk,k′ . (2.7)

The point to note is that since thek are eigenstates, there is no off-diagonal matrix element connecting two
different ‘transverse modes’k and k′. As long as we neglect elastic or inelastic scattering processes that
couple different transverse modes, we can think of the transverse modesk as separate 1D devices connected
in parallel. Each transverse modek has an extra transverse energyεk = h̄2k2/2m that should be added to
the longitudinal energy whenever the total energy is required (for example, in the argument of the Fermi
function).

Note that the details of the transverse modes could be very different for other devices. For example, a MOS
device is essentially a 2D charge sheet so that we have plane wave eigenstates only in one transverse direction;
the other transverse direction usually has a small number of discrete subbands. With molecular conductors
it is common to treat each molecule as independent, so that there are no transverse modes to worry about.
However, in this paper we will assume a uniform 2D conductor as shown in Fig.4. For all our examples we
will use the following parameters:m= 0.25m0, m0 = 9.1×10−31 Kg, ε = 10ε0, ε0 = 8.85×10−12F m−1,
a = 0.3 nm,ND = 1020 cm−3 in the n++ regions, each of which is 4.5 nm long andND = 5× 1019 cm−3

in the n+ region, which is 21 nm long. We have chosen very high doping densities deliberately so that the
screening length is short compared with the length of the device. The device has 100 points along the length
of the device so that the size of the matrix[HL ] is 100× 100. This is a fairly comfortable size for running on
a PC and the results presented here (Figs5, 8 and13) were all obtained on a laptop computer. State-of-the-art
supercomputers can handle much larger matrices and hence much larger devices.

3. Equilibrium

Once we have chosen a suitable representation, we are ready to calculate equilibrium band diagrams for
1D devices. The equilibrium problem can be done in two ways, one that uses the concept of Green’s functions
and one that does not, and it is instructive to compare the two. That is what we will do in this section using
the n++–n+–n++ structure shown in Fig.4A as an example. This discussion will also help introduce the
self-energy functions61 and62 which describe the connection of the device to the contacts (see Fig.2).

As shown in Fig.1B, equilibrium problems can be handled by solving the Poisson equation self-
consistently with the law of equilibrium statistical mechanics which requires all the eigenstates of the de-
vice (that is,H +U ) to be filled up according to the Fermi function. This means that the equilibrium density
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matrix for a particular transverse mode ‘k’ can be written as (we are using square brackets[..] to denote
matrices)

[ρk]es=


f0(ε1+ εk − µ) 0 0 · · ·

0 f0(ε2+ εk − µ) 0 · · ·

0 0 f0(ε3+ εk − µ) · · ·

· · · · · · · · · · · ·

 (3.1)

where the subscript ‘es’ indicates that the density matrix is expressed in the eigenstate representation:ε1,
ε2 etc are the eigenenergies of the longitudinal HamiltonianHL , while theεk are the eigenenergies of the
transverse Hamiltonian,HT (see eqns (2.1), (2.2)). Since all the transverse modes ‘k’ are like independent
devices in parallel, we need the density matrix summed (or ‘traced’) over all ‘k’:

[ρ]es=
∑

k

[ρk]es=


F0(ε1− µ) 0 0 · · ·

0 F0(ε2− µ) 0 · · ·

0 0 F0(ε3− µ) · · ·

· · · · · · · · · · · ·

 (3.2)

where

F0(E − µ) =
∑

k

f0(E + εk − µ) = S
mkBT

π h̄2
ln

(
1+ exp

(
µ− E

kBT

))
. (3.3)

Note that we have included the sum over spins as well when evaluatingF0 in eqn (3.3). Thek-summed density
matrix [ρ] looks just like[ρk] except that the Fermi functionf0 is replaced by the logarithmic functionF0,
and this simple replacement takes care of the transverse modes in they–z plane. We can otherwise proceed
with our calculation in thex-direction as if it were a purely 1D problem.

To obtain the density matrix in real space (whose diagonal elements give us the electron densityn(r ), see
eqn (1.17)), we have to perform a unitary transformation:

[ρ] = [V][ρ]es[V]
+ (3.4)

where[V] is a matrix whose columns denote the eigenvectors ofHL at each of the points on the discrete
lattice. Once we have set up the matrix representingHL , following the prescription in eqn (2.5) it takes just
three commands in MATLAB to obtain the density matrix[ρ] in real space:

[V, D] = eig(H L);

rho= log(1+ exp((mu− D)./kT));

rho= V ∗ (rho) ∗ V ′;

The first command calculates a diagonal matrix[D] whose diagonal elements are the eigenvalues ofHL and
a matrix[V] whose columns are the corresponding eigenvectors. The second and third commands implement
eqns (3.2) and (3.4) respectively. Actually we could achieve the same result with just one command:

rho= logm(1+ exp((mu− H L)/kT));

by noting that the density matrix can be written as (I : identity matrix of the same size as[HL ])

[ρk] = f0([HL + (εk − µ)I ])

[ρ] =
∑

k

ρk = F0([HL − µI ]). (3.5)

Equation (3.5) expresses the density matrix as a function of the Hamiltonian matrix and is really equivalent
to eqns (3.2) and (3.4), since the rule for evaluating a function of a matrix is to write down the function in a
representation that diagonalizes the matrix (eqn (3.2)) and then transform it back to the original representation
(eqn (3.4)). We probably do not save any time by using one command instead of three, but the real value
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of eqn (3.5) is conceptual: it states that theequilibrium density matrix is simply the Fermi function of the
Hamiltonian matrixin any representation. This is a powerful concept that we will make further use of.

3.1. Periodic boundary conditions

We solve eqn (3.5) self-consistently with the Poisson equation

d2U

dx2
=

q2

ε
[ND − n] (3.6)

using the standard Newton–Raphson technique (see for example, Appendix C, Ref. [3]) to obtain the equi-
librium potential profileU (x) and electron density as shown in Fig.5. The point to note is that if we use the
matrix [HL ] given in eqn (2.5) we obtain the dashed profile for the electron density which goes to zero at the
ends of the device. This is because of the particular boundary condition that is implied by our use of[HL ].
When we use the finite difference method to write the Schrödinger equation on a discrete lattice we obtain

E91 = −t90+ (Ec + 2t +U1)91− t92 (3.7a)

at the left end of the lattice (Fig.4B). The problem is that we want to get rid of90, in order to truncate[HL ]

to a finite size. We have the same problem at the right end

E9N = −t9N−1+ (Ec + 2t +UN)9N−t9N+1 (3.7b)

where we would like to get rid of9N+1. If we simply truncate the matrix, we are in effect setting90 =

9N+1 = 0 which makes the calculated electron density go to zero at the ends. This would be an appropriate
boundary condition if we had an infinite potential wall at the ends. However, what we actually have is an
open boundary and this is better described by periodic boundary conditions which effectively wrap the right
end around and connect it to the left end by settingHL(1, N) = HL(N,1) = −t . The electron density then
approaches the constant bulk value near the ends as we would expect. However, it is important to note that
we are getting rid of end effects by artificially wrapping the device into a ring. We are not really doing justice
to the open boundary that we have in the real device. The self-energy method that we will describe later in
this section allows us to do that. But before we can describe this method, we need to discuss the Green’s
function approach for calculating the density matrix.

3.2. Green’s function

Let us start from eqn (3.5) and rewrite it in the form

[ρk] =

∫
+∞

−∞

d E f0(E + εk − µ) δ([E I − HL ])

[ρ] =

∫
+∞

−∞

d E F0(E − µ) δ([E I − HL ]). (3.8)

Using the standard expression for the delta function (0+: positive infinitesimal)

2πδ(x) = Limε→0+

(
2ε

x2+ ε2

)
=

i

x + i 0+
−

i

x − i 0+

we can write

δ(E I − HL) =
i

2π
([(E + i 0+)I − HL ]

−1
− [(E − i 0+)I − HL ]

−1). (3.9)
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Fig. 5. Self-energy method (crosses); periodic boundary conditions (solid curves); infinite wall boundary conditions (dashed curves).
A, Equilibrium potential profile and; B, electron density in a n+–n–n+ structure calculated by solving eqns (3.4) and (3.5) self-
consistently. The parameters used are listed at the end of Section2. The dotted line in A indicates the equilibrium Fermi level.

Equations (3.8) and (3.9) can be rewritten in the form

[ρk] =
1

2π

∫
+∞

−∞

d E f0(E + εk − µ) [A(E)]

[ρ] =
1

2π

∫
+∞

−∞

d E F0(E − µ) [A(E)] (3.10)

where[A(E)] is known as thespectral function

[A(E)] = i ([G(E)] − [G(E)]+) (3.11)

[G(E)] being the retardedGreen’s functiondefined as

[G(E)] = [(E + i 0+)I − HL ]
−1. (3.12)

One can see from eqn (3.10) that the spectral function[A(E)]/2π can be interpreted as the available density
of states which are filled up according to the Fermi function to obtain the electron density. Indeed the diagonal
elements of[A(E)]/2π in the real space representation give us the local density of states at different points
in space (a quantity that can be measured with scanning probe microscopy).

Equation (3.10) represents the Green’s function version of eqn (3.5). One might wonder what we have
gained by introducing an unnecessary integration over the energy coordinate,E. What makes this extra
complication worthwhile is the convenience it affords in the treatment of open systems. Indeed if our interest
was limited to closed systems there would be little reason to use Green’s functions. But for open systems
the Green’s function method allows us to focus on the device of interest and replace the effect of all external
contacts and baths with self-energy functions61,2,S (see Fig.2A) which are matrices of the same size as the

Jiahao Kang
Highlight
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Fig. 6.The interaction of a device with a reservoir can be represented by a self-energy matrix
∑

.

device Hamiltonian, even though the contacts themselves are much larger entities. This is one of the seminal
concepts of many-body physics that we will now discuss.

3.3. Self-energy

The concept of self-energy is used in many-body physics to describe electron–electron and electron–
phonon interactions. In the present context, however, we are using this concept to describe something much
simpler, namely, the effect of a semi-infinite contact. But the principle is the same. In general, we have a
‘device’ connected to a large reservoir and the overall Hamiltonian matrix has the form (see Fig.6)[

H τ

τ+ HR

]
where the dimension ofHR is huge compared to that ofH . The overall Green function has the form[

G GDR

GRD GR

]
=

[
(E + i 0+)I − H −τ

−τ+ (E + i 0+)I − HR

]−1

.

We are only interested inG (and not inGR or GDR or GRD), because we only care about the details inside
the device and not inside the reservoir. It is straightforward to show that (see p. 146, Ref. [6])

G =

[
(E + i 0+)I − H −6

]−1

≈

[
E I − H −6

]−1

(3.13)

where

6 = τgRτ
+ and gR = [(E + i 0+)I − HR]

−1. (3.14)

This shows that the effect of the coupling to the reservoir can be accounted for by adding a self-energy
matrix6 to the HamiltonianH (Fig. 6). This is a very general concept that allows us to eliminate the huge
reservoir and work solely within the device subspace whose dimensions are much smaller. Note that6 is not
necessarily an infinitesimal quantity (unlike 0+); it can be finite with a value defined by the coupling to the
reservoir. We will discuss the physical meaning of6 further at the end of this section.

We could use eqn (3.14) in general to calculate the self-energy for arbitrary reservoirs and coupling matri-
cesτ . It may seem that we have not gained much since we need to invert a huge matrix to obtain gR which
we need to evaluate the self-energy from eqn (3.14)

6(m,n) =
∑
µ,ν

τ(m, µ)gR(µ, ν)τ
+(ν,n).

The indicesm, n refer to points within the device whileµ, ν refer to points inside the reservoir. However,
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the coupling matrixτ couples the points within the device to a small number of points on the surface of
the reservoir, so that we only need gR (µ, ν) for points (µ, ν) that are on the surface. This surface Green’s
function can often be calculated analytically assuming a given model for the reservoir.

For the simple 1D problem at hand, the self-energy can be obtained from fairly elementary arguments
without worrying about surface Green’s functions. The self-energy matrix61(E) that accounts for the semi-
infinite lead on the left is given by (t ≡ h̄2/2ma2 as defined earlier before eqn (2.5))

61(E) = |1〉 |2〉 · · · |N − 1〉 |N〉
|1〉 −t exp(ik1a) 0 0 0
|2〉 0 0 0 0

...
...

...
...

|N − 1〉 0 0 0 0
|N〉 0 0 0 0

(3.15a)

whereE = Ec +U1+ 2t (1− cosk1a).
In other words all we need is to add a term−t exp(ik1a) to HL(1,1) and we have accounted for the semi-

infinite lead exactly, as far as calculating the Green’s function is concerned. We can derive this result using
an elementary argument. We stated earlier (see eqn (3.7a)) that the basic question at the boundary is how to
eliminate90 from the equation

E91 = −t90+ (Ec + 2t +U1)91− t92. (same as eqn (3.7a))

With infinite wall boundary conditions we set90 equal to zero while with periodic boundary conditions
we set it equal to9N . In the self-energy method we assume that we only have outgoing (not incoming)
waves at the ends. The fact that an actual device has incoming waves as well from the contacts is irrelevant
when calculatingG.G is the retarded Green’s function representing the response of the system to an impulse
excitation within the device:

[
E I − H − 6

]
G = I , and hence the appropriate boundary condition forG is

that we only haveoutgoingwaves at the ends. This means that when calculatingG we can write

90 = 91 exp[ik1a]

so that eqn (3.7a) becomes

E91 = −t exp[ik1a]91+ (2t +U1)91− t92

showing that we can take care of the open boundary condition simply by adding a term−t exp[ik1a] to point
1, as stated above. Similarly the self-energy matrix62(E) that accounts for the semi-infinite lead on the right
has only one non-zero term at pointN which is given by

62(N, N; E) = −t exp(ik2a) where E = Ec +UN + 2t (1− cosk2a). (3.15b)

The Green’s function is obtained from

G(E) =

[
E I − HL −61−62

]−1

(3.16)

where the self-energy functions61(E) and62(E) account for the open boundary conditions exactly. The
spectral functionA(E) is then obtained from eqn (3.11) from which the electron density is obtained using
eqn (3.10). As we can see from Fig.5 the results agree quite well with those obtained directly using periodic
boundary conditions. The self-energy method is computationally more intensive, since it requires an integra-
tion over energy and looking at Fig.5 it is not clear that the extra effort is worthwhile. However, it should be
noted that the periodic boundary conditions merely get rid of end effects through the artifact of wrapping the
device into a ring while the self-energy method treats the open boundary condition exactly. An open system
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has a continuous energy spectrum, while a ring has a discrete energy spectrum. The electron density is ob-
tained by integrating over energy and is relatively unaffected by the discretization of the spectrum at least at
room temperature. But the difference would be apparent, if we were to look at the density of states, that is,
the spectral function. The full power of the self-energy method becomes apparent when we model a device
under bias—a problem that cannot be handled with periodic boundary conditions.

3.4. Broadening

It might appear that the self-energy method is just another method for handling boundary effects. With
infinite wall boundary conditions we set90 = 9N+1 = 0; with periodic boundary conditions we set90 =

9N ; in the self-energy method we set90 = 91 exp[ik1a] and9N+1 = 9N exp[ik2a]. However, there
are two factors that distinguish61 and62 from ordinary Hamiltonians. Firstly, they are energy dependent.
Secondly, they are not Hermitian. We can write

HL +61+62 =

(
HL +

61+6
+

1

2
+
62+6

+

2

2

)
+

(
61−6

+

1

2
+
62−6

+

2

2

)
= ĤL − i01/2− i02/2

where

ĤL ≡ HL +
61+6

+

1

2
+
62+6

+

2

2
and

01 ≡ i

[
61−6

+

1

]
, 02 ≡ i

[
62−6

+

2

]
.

The point we want to make is that the self-energy terms have two effects. One is to change the Hamiltonian
from HL to ĤL which changes the eigenstates and their energies. But more importantly, it introduces an
imaginary part to the energy determined by the ‘broadening’ functions01 and02. The former represents a
minor quantitative change; the latter represents a qualitative change with conceptual implications.

One way to understand the meaning of these functions is to imagine a representation which diagonalizes
ĤL . This representation will not necessarily diagonalize01 and02—indeed interesting quantum interference
effects often arise from the non-diagonal elements of01 and02. But if 01 and02 are also simultaneously
diagonalized then the eigenenergies of

(
HL +61+62

)
will be given by

ε − i (γ1+ γ2)/2

whereε, γ1 andγ2 are the corresponding diagonal elements ofĤL , 01 and02 respectively. This could be
viewed as a broadening of the energy level from a delta functionδ(E − ε) into a line of the form

γ1+ γ2

(E − ε)2+ ((γ1+ γ2)/2)2

which could have a non-Lorentzian shape sinceγ1 andγ2 are in general energy dependent.
The imaginary part of the energy implies that the wavefunction and the associated probability decays with

time which can be written in the form (neglecting any energy dependence ofγ1 andγ2)

9 ∼ exp[−i εt/h̄]exp[−γ1t/2h̄]exp[−γ2t/2h̄]

|9|2 ∼ exp[−γ1t/h̄]exp[−γ2t/h̄]. (3.17)

An electron initially placed in that state will escape into the left and right leads with time constantsh̄/γ1 and
h̄/γ2 respectively. The quantitiesγ1/h̄ andγ2/h̄ thus represent the rates at which an electron initially in a
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Fig. 7. A discrete level is coupled to a reservoir with a Fermi levelµ. The broadening is the same regardless of whether the reservoir
states are empty or filled. A, Level coupled to empty states; B, level coupled to filled states.

particular state will escape into the left and right states respectively. For example, we have seen that a 1D
lead gives rise to a self-energy that is purely diagonal in real space representation (see eqn (3.15a))

6(1,1) = −t exp(ika)→ 0(1,1) = 2t sin(ka) = h̄v/a

which is quite reasonable since we expect the rate of escape from a lattice site of size ‘a’ to bev/a.

3.5. The exclusion principle

One final comment before we move on. In calculating the broadening of a level due to the connection to the
reservoir, it might seem that the result should depend on whether the reservoir is occupied or not. Consider a
discrete level coupled to a reservoir with a Fermi levelµ (Fig. 7). One could argue that the broadening would
be larger if the reservoir states corresponding to the discrete level are empty (case ‘a’) than if they are filled
(case ‘b’). After all, an electron placed on this level would be unable to escape in case ‘b’ since it would
be blocked by the Pauli principle and hence the level should not be broadened. From this point of view, the
broadening of a level should be given by

i6> ≡ 6out
= 0(1− f0(ε − µ)) (electron escape rate). (3.18a)

However, this argument is not correct, since a hole placed on this level would escape into the reservoir in
case ‘b’ but would be blocked in case ‘a’. This means that the broadening would be

− i6< ≡ 6in
= 0 f0(ε − µ) (hole escape rate or electron entry rate) (3.18b)

if we were describing the propagation of holes instead of electrons. But the correct point of view [13] is that
electrons and holes are all described by the same self-energy and hence the same broadening which is given
by the sum of the electron escape and entry rates:

0 = 6out
+6in

= i

(
6> −6<

)
. (3.19)

The broadening is thus the same irrespective of whether the reservoir is filled or empty.

4. Coherent transport

We have seen in the last section that the equilibrium density matrix is obtained by filling up the available
density of states (or spectral function[A]) according to the Fermi function (see eqn (3.10)). The next problem
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Fig. 8. The eigenstates of a composite contact–device–contact structure can be divided into two groups associated with incident waves
from the A, left contact and; B, the right contact. If we neglect scattering processes under bias, then under bias the ‘left’ eigenstates in
A remain in equilibrium with contact 1 (µ1) and the ‘right’ eigenstates in B remain in equilibrium with contact 2 (µ2).

is to find the density matrix if the device is connected to two contacts with different Fermi levelsµ1 andµ2
(see Fig.3), and hence different Fermi functions. The solution in general is quite involved: non-equilibrium
statistical mechanics is a far more complex subject than equilibrium statistical mechanics. However, the
answer is relatively simple, if we neglect scattering processes within the device (that is, if we assume transport
to be coherent). This turns out to be a fairly accurate assumption for many ultrashort devices like resonant
tunneling diodes. The eigenstates of the composite contact–device–contact structure can then be divided into
two groups associated with waves incident from the left and right contacts respectively (see Fig.8). When a
bias is applied, these ‘left’ eigenstates and ‘right’ eigenstates remain in equilibrium with the left contact and
the right contact respectively. The ballistic conductor is a relatively simple example of this principle where
the left eigenstates are the ‘+k’ states and the right eigenstaes are the ‘−k’ states (see Fig.3).

This simple observation (some might call it an ansatz) leads to an enormous simplification and is at the
heart of the transmission formalism that is widely used in mesoscopic physics [6–8]. It allows us to treat a
non-equilibrium problem using equilibrium statistical mechanics. At equilibrium, we fill up the full spectral
function[A] according to the Fermi function. Under bias, we fill up part of it (the left spectral function[A1])
according to the Fermi function in the left contact and part of it (the right spectral function[A2]) according
to the Fermi function in the right contact. The density matrix is given by (cf. eqn (3.10))

ρk =

∫
d E

2π
[ f0(E + εk − µ1)A1+ f0(E + εk − µ2)A2]

so that

ρ =
∑

k

ρk =

∫
d E

2π
[F0(E − µ1)A1+ F0(E − µ2)A2]. (4.1)

The Green’s function formalism provides a simple way to separate the total spectral function[A] into a left
spectral function[A1] and a right spectral function[A2]:

A1 = G01G+, A2 = G02G+ (4.2)

where

G =

[
E I − HL −61−62

]−1

, (4.3)

01,2 = i

[
61,2−6

+

1,2

]
. (4.4)
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We can prove that the total spectral function is indeed equal to the sum of the left and right spectral functions:

A ≡ i [G− G+] = A1+ A2 = G01G+ + G02G+ (4.5)

by writing eqn (4.3) as

G−1
= E I − HL −61−62 and [G+]−1

= E I − HL −6
+

1 −6
+

2

so that

G−1
− [G+]−1

= i01+ i02.

Premultiplying byG and postmultiplying byG+, we can prove eqn (4.5).
In the last section we discussed how the equilibrium potential profile can be calculated by solving eqn

(3.10) (or equivalently eqn (3.5)) self-consistently with the Poisson equation (see eqn (3.6)). Under non-
equilibrium conditions we can solve eqn (4.1) self-consistently with the Poisson equation using much the
same procedure. The self-consistent potential profile and electron density are shown in Figs9A,C respec-
tively, for a bias of 0.25 V. Note that the electron density hardly changes under bias as we would expect in
such a conductive medium. The potential profileU (x) adjusts in such a way that the resulting electron density
is virtually the same before and after the bias is applied. This requiresU (x) at the left end to be pulled down
relative to the equilibrium value, since the bias causes the right spectral functionA2, which is filled according
toµ2, to be partially emptied. For this reason, when solving the Poisson equation, it is inconvenient to fixU
at the ends; a better approach is to impose zero-field conditions at the ends of the device and letU float to
whatever value it chooses to [14].

Note that the potentialU at the left of the device (see Fig.9A) is actually pulled down by the applied
bias. Deep inside the contact, both+k and−k states will be equally occupied andU must change back
to the equilibrium value. This transition is not shown in the figure, but the point is that a significant part
(∼0.10 V) of the applied bias of 0.25 V is dropped inside the contact and not inside the device. One could
associate this external drop with the ideal contact resistance that leads to a non-zero resistance for ballistic
conductors [6–8]. This drop is often obscured in the presence of a large barrier, but is quite apparent in the
present example because the barrier is only 100 meV. Such effects are likely to be important for ballistic
devices, even with semiclassical models. It is interesting note thatU (x) under bias is relatively flat inside
the middle n+ region, unlike what we are used to in MOS transistors. This unusual profile results from a
combination of two factors: (1) lack of scattering which eliminates any ‘voltage drop’ inside the device, and
(2) high electron density which screens out the end effects within a short distance making the flat potential
profile obvious. As we will see in the next section, the potential profile looks more like an ordinary resistor
when we introduce a little scattering into the model.

4.1. Current

Once we have the density matrix from eqn (4.1), we not only have the electron density from its diagonal
elements (see eqn (1.17)) but also the current from the relation

I = (−q)Trace(ρ Jop) (4.6)

whereJop is the current operator that we discussed in the introduction (see eqns (1.13a) and (1.13b)). Since
we are interested in the current in thex-direction, the current operator is−(i h̄mL) ∂/∂x and can be written
as (N = L/a = the number of points on the lattice)

[Jop] = (t/h̄N)


0 −i 0 · · ·

+i 0 −i · · ·
0 +i 0 · · ·

· · · · · · · · · · · ·

 (4.7)
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Fig. 9. A, Potential profile; B, energy spectrum of the current density(J = Ĩ (E)/S) and; C, electron density in a n+–n–n+ structure
calculated under 0.25 V bias (solid) by solving eqns (4.6) and (3.5) self-consistently using the same parameters as in Fig.5. Also shown
for comparison are the equilibrium profiles in the absence of applied bias (dotted). Dashed curves in A indicate the quasi-Fermi levels in
the contacts; D, The current versus voltage characteristic which is linear. The current level is unphysically high due to the high electron
density and lack of scattering assumed in this model, as discussed in the text.

in the finite difference representation on a discrete lattice. Note that this operator is the same for all the
transverse modesk in our parabolic band model, though in general it may not be so [15]. Note that in the
real space representation, the diagonal elements of the Hermitian matrix (ρ Jop + Jopρ) are all equal since
the dc current must be the same at all ‘x’; taking the trace is thus the same as multiplying one of the diagonal
elements by the total number of pointsN.

Figure9D shows theI –V characteristics for this structure which as expected is quite linear. The current
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Fig. 10.The current can also be obtained by taking the difference between the influx and outflux at either interface.

level is unphysically high due to the high electron density and lack of scattering assumed in this model. We
have chosen very high doping densities deliberately so that the screening length is short compared to the
length of the device. It is straightforward to show (from the drift-diffusion equations) that the current in a
resistor withn = 5×1019 cm−3 which is one mean free path long is∼ 2×108A cm−2 for an applied voltage
of 0.25 V. The quantum calculations presented here also yield similar current levels which is of course far
too large for any real device. We could have chosen a lower doping density and obtained more reasonable
current values, but the reduced screening would cause end effects to obscure the flat potential profile within
the resistor, since it is only∼20 nm long.

It is instructive to look at the energy spectrum of the current (at a particular bias) calculated from the
energy-resolved density matrix,ρ̃(E)

Ĩ (E) = (−q)Trace[ρ̃(E)Jop] → I =
∫

d EĨ (E) (4.8)

2π [ρ̃(E)] = F1[A1(E)] + F2[A2(E)] → ρ =

∫
d Eρ̃(E) (4.9)

where

F1 ≡ F0(E − µ1) and F2 ≡ F0(E − µ2). (4.10)

Figure9C shows the energy spectrum of the current,Ĩ (E) from which it is apparent that the current flows
above the barrier in the energy range betweenµ1 andµ2, as we would expect. There is a net current only
in the energy range where the Fermi functions in the two contacts differ significantly. Other energies remain
essentially in equilibrium: they contribute to the electron density, but not to the current.

4.2. An alternative current expression

An alternative expression for the current can be obtained from a rate equation point of view (see Fig.10)
by writing the outflux from the device into contact 1 as

Iout = (−q/h̄)
∫

d E trace(01ρ̃) (4.11)

which can be understood by noting that the density matrixρ is like the electron density while01/h̄ represents
the rate at which electrons escape into the contact. The influx from the contact into the device can be written
by equating it to the outflux we would have if the device were in equilibrium with that contact:

I in = (−q/h̄)
∫

d E trace(01ρ̃1) (4.12)
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where

2π [ρ̃1(E)] ≡ F1[A1(E)] + F1[A2(E)] (4.13)

represents the density matrix we would have ifF2 were equal toF1. The net current is given byI = I in− Iout.
Making use of eqns (4.9), (4.11)–(4.13) we obtain

I = (−q/h)
∫

d E trace(01A2)[F1− F2]. (4.14)

We could go through a similar argument regarding the influx and outflux at the other interface to obtain an
equivalent expression for the current:

I = (−q/h)
∫

d E trace(02A1)[F1− F2]. (4.15)

Equations (4.14), (4.15) provide alternative expressions either of which can be used to calculate the termi-
nal currents without explicitly calculating the density matrix. However, the current operator approach (see
eqn (4.8)) allows one to calculate the current flow pattern inside the device (which is trivial for 1D exam-
ples, but could be more interesting in higher dimensions or when dissipation is included) rather than just the
terminal currents.

4.3. Relation to the transmission formalism

An interesting aspect of eqns (4.14) and (4.15) is that the expression for the current has exactly the same
form that is used in the transmission formalism

I = (−q/h)
∫

d ET(E)(F1− F2). (4.16)

The functionT(E) is typically interpreted as the probability that an electron will transmit from the left to
the right contact. Equation (4.16) is often used to calculate the current in tunneling and resonant tunneling
devices. Comparing eqn (4.16) with eqns (4.14), (4.15) it is clear that

T(E) = trace(01A2) = trace(02A1)

= trace(01G02G+) = trace(02G01G+). (4.17)

The NEGF formalism, applied to a coherent device, can thus be viewed simply as a convenient method for
evaluating the transmission probability. The basic physics is identical. The real power of the NEGF formalism
lies in providing a clear prescription for including scattering processes, as we will discuss next.

5. Non-coherent transport

As we mentioned in the introduction, scattering processes enter the NEGF formalism through the self-
energy function6S, which we have ignored so far. For resonant tunneling devices, it is usually fairly accurate
to neglect6S, but this may not be adequate for MOSFETs, even 20 nm ones. What complicates this aspect of
the problem is that6S is dependent on the density matrix and has to be calculated self-consistently somewhat
like the potentialU (x). However,U (x) is related to the electron density through the laws of electrostatics
while the relation of6S to the density matrixρ̃ can be considerably more complicated depending on the
nature of the scattering mechanism and the level of approximation used. The NEGF formalism provides clear
prescriptions for calculating6S for every scattering mechanism that we can think of and thus can be used to
investigate the effect of different scattering processes from first principles. Using simple isotropic models for
scattering we have shown that the NEGF formalism indeed provides physically reasonable descriptions of
energy dissipation in nanoscale devices [16] in good agreement with semiclassical models. However, we will
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Fig. 11.Dissipative processes can be included with a phenomenological model that is equivalent to adding a separate contact to each
lattice site and then adjusting its Fermi level so as to ensure current conservation throughout the device.

not go into any of these models in this paper, which is far too long already. Instead we will present results
obtained from a ‘toy’ model that captures some of the important features of dissipative transport.

Suppose we view the scattering process as just another contact described by6S, no different from the
actual contacts described by61 and62. We can then simply extend eqns (4.1)–(4.4) to include a third
contact

G =

[
E I − H −61−62−6S

]−1

(5.1)

01,2,S= i

[
61,2,S−6

+

1,2,S

]
(5.2)

A1 = G01G+, A2 = G02G+, AS = G0SG+ (5.3)

2π [ρ̃(E)] = F1[A1] + F2[A2] + FS[AS]. (5.4)

We could set

6S = −i


η1 0 · · · · · ·

0 η2 0 · · ·

0 0 η3 · · ·

· · · · · · · · · · · ·

 (5.5)

where theη are phenomenological parameters related to the scattering timeτ by the relationτ = h̄/2η (see
eqn (3.16)). However, the problem is that unlike the real contacts, the ‘scattering contact’ does not have a
well-defined Fermi levelµS from which we can calculateFS. If we use eqn (5.4) with FS calculated from a
singleµS we would effectively be shorting together all the conceptual scattering contacts. A more physically
correct model is to let each lattice ‘n’ site float to a differentµSn and define an inscattering function

6in
S = 2


FS1η1 0 · · · · · ·

0 FS2η2 0 · · ·

0 0 FS3η3 · · ·

· · · · · · · · · · · ·

 (5.6)

which is then used to calculate the density matrix from a modified version of eqn (5.4):

2π[ρ̃(E)] = F1A1+ F2A2+ G6in
S G+. (5.7)

How do we know whatµSn to use for the scattering contacts? If we make a reasonable guess as shown in
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Fig. 12.The same device as in Fig.9 including scattering processes as described in the text withη = 25 meV. Assuming a reasonable
profile forµS(x), as shown by the dashed curve in A, we obtain the solid profile for the current density across the device. By adjusting
µSn, the current can be made nearly constant across the device as shown by the dashed line. Also shown for comparison in B is the
current without scattering (dotted line).

Fig. 12A, we will find that the current will not be the same everywhere inside the device. We could interpret
this lack of current conservation as an inflow or outflow of current at the scattering contacts. But scattering
processes lead to an exchange of energy without an exchange of particles, so that we need to ensure that the
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Fig. 13.A, Self-consistent potential profile,U (x) andµS(x) corresponding to the constant current condition shown by the dashed line
in Fig. 12; B, energy spectrum of the current(J = Ĩ (E)/S) at left end of the device (solid curve) and at right end of the device (dashed
curve). Also shown for comparison is the potential profileU (x) and the energy spectrum calculated without scattering (dotted curve),
which is the same at every ‘x’.

current at the scattering contacts is zero. This can be done by adjusting theµSn self-consistently so as to
reduced I/dx to zero.

Figure12shows the potential profile and current density for the same device as in Fig.9 including scatter-
ing processes through this method withη = 25 meV in the n+ region and zero in the n++ regions. Assuming
a reasonable profile forµSn as shown by the dashed curve in(A) we obtain the solid profile for the current
density across the device, indicating that current is being injected by the scattering contacts in the left half of
the device and extracted by those in the right half. To make the current constant we need to lowerµS in the
left half and raise it in the right half. With proper adjustment, the current can be made nearly constant across
the device as shown by the dashed line.

Figure13 shows the potential profileU (x) and theµS(x) profile corresponding to this constant current
condition, along with the energy spectrum of the current. The results look quite reasonable. The potential
drops linearly across the device instead of remaining flat since we have now effectively introduced a resis-
tance. The fraction of the voltage dropped inside the device is increased relative to the ballistic case (compare
the solid and dotted curves in Fig.13A). The energy spectrum of the current now moves downwards as we
go from contact 1 towards contact 2 as the hot electrons relax their extra energy. By contrast, the coherent
transport theory of the last section predicts the same spectrum at every point in the device since there is no
mechanism for energy relaxation in the model. this is expected since the divergence of the energy current

IU =
∫

d E EĨ (E) (5.8)

is equal to the power dissipated. In a model with no dissipation, the energy current is spatially constant.
But in a model with dissipation, the energy current decreases with distance in agreement with the calculated
results shown in Fig.13B.

This simple phenomenological approach does seem capable of capturing much of the essential physics.
Indeed it can be justified in the linear response (or low bias) regime from a microscopic theory if we assume
that the scattering is purely isotropic [17]. The basic idea of simulating scattering processes through a floating
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contact (originally due to Buttiker [18]) is widely used in mesoscopic physics where much of the attention
is usually focused on the linear response regime. A proper microscopic approach, however, requires us to
abandon the notion of a Fermi function for the scattering contact altogether and recognize that the inscattering
and outscattering functions (cf. eqn (3.19))

0S = 6
out
S +6

in
S = i

(
6>S −6

<
S

)
(5.9)

are not related to the broadening0S by Fermi functions. Instead they have to be calculated self-consistently
from the density matrix, the precise relationship depending on the nature of the scattering process and the
level of approximation desired. For example, if we are treating scattering by the emission of phonons with
energyh̄ω in the first Born approximation then6in

S (E) ∼ ρ̃(E+ h̄ω), since electrons with energyE+ h̄ω get
scattered to the energyE. The density matrix atE in turn depends on the inscattering atE through eqn (5.7)
and we need a self-consistent calculation of6in

S (E) andρ̃(E). Usually in the NEGF literature, the symbol
−iG< is used to denote what we have called 2πρ̃, while+iG> is used to denote the empty states(A−2πρ̃)
or the hole density matrix and different scattering processes lead to different relationships between6

〈,〉
S on

G〈,〉 (see for example, Refs [3, 11]). But for a particular microscopic scattering mechanism treated to any
order, the precise relationship is clearly laid out in the NEGF formalism, just as in semiclassical theory the
scattering rates are clearly known for any process to any order. Indeed, the semiclassical results follow from
the NEGF expressions if we assume the eigenstates to be plane waves and use the plane wave representation.

From a practical point of view the real difficulty with including scattering processes is that strictly speak-
ing, different transverse modes,k and different energies,E are not fully independent any more. The inscat-
tering at one (k, E) depends on the density matrix at other (k′, E′). To make the problem tractable, it is likely
that reasonable physically motivated approximations will be needed that are geared towards specific devices.
However, the value of the NEGF formalism lies in providing a correct physically sound model that can be
used as a starting point for making the necessary approximations.

6. Summary and outlook

As stated in the introduction, we have tried to achieve two objectives: (1) to explain the central concepts
that define the ‘language’ of quantum transport, such as density matrix and self-energy and (2) to illustrate
the non-equilibrium Green’s function (NEGF) formalism with simple examples that interested readers can
easily duplicate on their PCs. The numerical results presented here (Figs5, 9, 13) were all obtained on a
laptop computer and the author will be glad to share his MATLAB programs, typically 40 lines long. These
examples all involve a short n++–n+–n++ resistor whose physics is easily understood, although the basic
formulation is quite general and can be applied to something as different as a nanotube or a molecular wire.
Our primary purpose is to illustrate some of the unusual issues that arise in the simulation of short ballistic
devices and to show that the NEGF formalism leads to physically sensible results for this simple device.
We show that the self-consistent potential profile inside a ballistic conductor (with large cross-section) tends
to be flat in the interior of the conductor (see Fig.9), indicating that the ‘voltage drop’ is primarily at the
ends. Also, a significant fraction of the voltage is dropped inside the contacts and can be associated with
the ideal contact resistance well known in mesoscopic physics. However, when we introduce scattering into
the model, the potential acquires a non-zero slope inside the conductor as we might expect for an ordinary
resistor (see Fig.13) and the role of the contact resistance is reduced. These examples also underscore the
importance of performing self-consistent calculations that include the ‘Poisson’ equation, augmented with
an additional exchange-correlation potential as needed. TheI –V characteristics of nanoscale structures is
determined by an interesting interplay between twentieth century physics (quantum transport) and nineteenth
century physics (electrostatics) and there is a tendency to emphasize one or the other depending on one’s
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background. But it is important to do justice to both aspects if we are to derive real insights. We believe
that self-consistent solutions of the NEGF and ‘Poisson’ equations should be able to capture the essential
physics of most nanoscale devices with the possible exception of those in the ‘Coulomb blockade’ regime,
as discussed in the introduction. However, much work will be needed in the coming years to identify suitable
Hamiltonians and scattering models for specific devices that are both accurate and tractable.
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