ECE 194D Homework 1 Spring 2011

Homework 1 (Due Friday, April 15, at 5pm)

1) Kinematics and workspace. Consider the kinematics of the 3-link arm example discussed in
class and shown in the figure below. Note that this drawing is not to scale. We wish to consider
different possible lengths for each of the three links. For each set of lengths given (sets A and B,
below), determine both 1) the reachable workspace and ii) the dexterous workspace. Sketch and
label each region.

A) L1:1, Lzzl, L3:O.2

B) L1:1, L2:2, L3:1

C) Now, assume: L;=0.5, and L,=0.6. Given some arbitrary value for Lj, will some

dexterous workspace always exist? If so, explain why. If not, specify the range of values

for L3 for which a dexterous workspace will exist.

Recall that the reachable workspace is the set of all points the end effector can reach, while the
dexterous workspace is the set of all points the end effect can reach at an arbitrary angle.
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Figure 1. Kinematics of 3-link arm (problem 1).

2) Euler angles. We mentioned Euler angle rotations only briefly in class. This problem is
designed to build better intuition about the conventions typically used to specify rotations
(orientation) of a rigid body. Rotation angles can be specified either with respect to:

[1] A relative coordinate frame, that is fixed to the rotating body

[2] An absolute coordinate frame, that remains fixed; i.e., a global coordinate frame.
In either case, we require 3 rotations to specify any arbitrary orientation of a rigid body in space.
We will refer to case 1 as “Euler angle rotation” and case 2 as “fixed angle rotation”.
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Figure 2. Local coordinate frame definition for dice in problem 2.

A standard American die (e.g., from a set Las Vegas dice) is shown above. The numbers 1
through 6 are arranged such that the numbers on opposite faces always sum to 7: 1 is opposite 6,
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2 opposes 5, and 3 is opposite 4. Let us define a relative coordinate frame for a die, as shown at
left in Figure 2. When aligned with the global coordinate frame, the x axis points out of side 1, y
points out of 2, and z points out of 3, as shown. If we rotate the die at left counter-clockwise by
180 degrees about either z (absolute) or z’ (relative), it will appear as shown in the middle figure.
If we now rotate the die shown in the middle figure by 90 degrees (again, CCW is conventional)
about y (absolute y), then faces A, B, and C in the diagram at right will show 3, 5, and 1,
respectively. If we instead rotate the die shown in the middle figure by 90 degrees about the
relative axis, y’, then A=4, B=5, and C=6.

For each case below, begin with the configuration A=1, B=2, C=3. Determine the new
orientation (A=?, B=?, C=?) that results from performing the following rotations of the die:

A) An Euler angle rotation in the order z’-y’-x’, by angles -90°, +90°, +180°.
B) A fixed angle rotation in the order x-y-z, by angles +180°, +90°, -90°.

C) An Euler angle rotation in the order z’-y’-z’ by angles +180°, +90°, -90°
D) A fixed angle rotation in the order z-y-z by angles -90°, +90°, +180°.

As described in pages 49-53 in Spong, performing a set of rotations in relative coordinates
results in the same configuration as performing these rotations in the reverse order in absolute
coordinates. Note that this would mean your answers to A) and B) should therefore be
identical. Similarly, you can check that answer C) and D) are the same, as well.

Note: It is probably wise to sketch the “intermediate” orientation above, rather than doing all
rotations “‘in your head”!

3) Degrees of Freedom (DOF). In the figure below, a 2-link robot arm is mounted to a rolling
base. The system therefore has 3 degrees of freedom: 1 prismatic joint (x) and 2 rotational joints
(6; and 0,). As in problem 1, assume the end effector is a small tool at the tip of the last (most
distal to the cart) link. The position and orientation of the end effector can be written as:

(x& yea 96)
where all three degrees of freedom are with respect to the absolute coordinate frame (indicated
by the dashed lines in the figure).
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Figure 3. 3DOF robot system for problem 3.
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Assume allowable motions are limited to: 0 < 8, < 180", y, = 0,d = 1.5 (m), L = 1 (m).
A) Sketch the reachable workspace for the end effector. Label carefully.
B) Along the line x, = 0, what is the range of values possible for é,, as a function of y,?
You may answer either with an analytic expression (calculated by hand) or by submitting
MATLAB code and a plot of the bounds on 6, and y, varies.

4) Singularities. Below is a figure of a mechanism constrained to a single degree of freedom, x,

at the output. The relationship between 0 and x is:
x = 2Lcos6

L k- y_yx:QLcOsﬂf

Figure 4. 1 DOF mechanism for problem 4.

A) Derive the relationship between x and 6.

B) Assume x = 0, and we desire ¥ = 1 (m/s). What must 8 be to achieve this?

C) Assume x = L, and we desire x = 1 (m/s). What must 6 be to achieve this?

D) Assume x = 1.8L, and we desire x = 1 (m/s). What must 8 be to achieve this?
E) Assume x = 2.0L, and we desire ¥ = —1 (m/s). What must @ be to achieve this?

Configuration E is known as a “singularity”. It is a configuration in which it becomes impossible
to move in a particular location: that is, note that X > 0 is impossible at x = 2.0L. Singularities
can be “dangerous” places to operate, because (often) they are configurations near which the
robot’s input velocity (here, 8) must “blow up”, unbounded, to achieve a finite output velocity at
the end effector. This phenomenon explains (in part) why humanoid robots often avoid operating
with legs “fully extended”, near a singularity.

5) Work and Mechanical Impedance. Conservative vs. non-conservative forces.

Figure 5. Mass, viscous damping, and spring impedance elements (problem 5).
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Masses (or inertia) and springs are conservative impedances, while damping is non-conservative:
a dashpot (mechanical resistance) or an electrical resistor dissipates energy. For each of the 3
mechanical impedances in Figure 5 (A,B, and C), calculate the work done (i.e., the integral of
force times velocity) by moving point “p” from the state (x = 0, x=0) to the state (x = 3 (m),
x=3 (m/s)) in each of the following two ways:
I. 2 seconds of constant acceleration at ¥ = 0.5 (m/s°), then 1 second at ¥ = 2.0 (m/s?).
II. 1secondat¥ = 3.0 (m/s®), then 0.5 seconds at ¥ = 0 (m/s?).
D) Do your results make sense, given that damping is non-conservative, while inertia and
stiffness are conservative impedance elements? (Hint: which are “path dependent”?)

6) Analogous mechanical and electrical impedances as “circuit elements”. Figure 6 shows a
4™ order (translational mechanical) system (at right) and an analogous circuit structure (at left).

[ ——————y
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Figure 6. Mechanical impedances in a circuit (problem 6).

F&) _ F&)

A) Use the definitions given in class for mechanical impedance, Z,,(s) = o6 — SX(sy and for
electrical impedance, Z,(s) = %, to solve for, Z;(s), Z,(s), and Z5(s) in the circuit diagram.
B) Solve for the transfer functions %16) gnd 228

F(s) F(s)

7) Reflected inertia and mechanical impedance.
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Figure 7. Motor, transmission, and lab (problem 7).
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Figure 7 shows a system with a motor driving a load. In the lefthand diagram, 6,, (motor
velocity) and 6, (load velocity) are simply related through the gear ratio: 6,, = N6;. In the
righthand diagram, there is now a spring element, with stiffness k,, between the larger gear and
the load inertia, J;. This spring models the compliance that is sometimes a noticeable factor
in real transmission systems, and it changes the dynamics from a 2nd-order system to a 4th-
order system.

Note, the lefthand system is one we have already considered in class (Lecture 4). Also, if
you look carefully, you should notice that the righthand system is (intentionally) very
similar to the translational mechanical system depicted in problem 6.

Om(s) 0L(s)
d —=
o) O ()
(that is, in the limit as &y become infinitely stiff).

A) Solve for the transfer functions —= for the system with no shaft compliance

Om(s)

) and ——= QL ( ) for the system with shaft compliance.

B) Solve for the transfer functions ——
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