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2 opposes 5, and 3 is opposite 4.  Let us define a relative coordinate frame for a die, as shown at 
left in Figure 2.  When aligned with the global coordinate frame, the x axis points out of side 1, y 
points out of 2, and z points out of 3, as shown.  If we rotate the die at left counter-clockwise by 
180 degrees about either z (absolute) or z’ (relative), it will appear as shown in the middle figure.  
If we now rotate the die shown in the middle figure by 90 degrees (again, CCW is conventional) 
about y (absolute y), then faces A, B, and C in the diagram at right will show 3, 5, and 1, 
respectively.  If we instead rotate the die shown in the middle figure by 90 degrees about the 
relative axis, y’, then A=4, B=5, and C=6. 
  
For each case below, begin with the configuration A=1, B=2, C=3.  Determine the new 
orientation (A=?, B=?, C=?) that results from performing the following rotations of the die: 
 
 A) An Euler angle rotation in the order z’-y’-x’, by angles -90°, +90°, +180°. 
 
 B) A fixed angle rotation in the order x-y-z, by angles +180°, +90°, -90°. 
 
 C) An Euler angle rotation in the order z’-y’-z’ by angles +180°, +90°, -90° 
 
 D) A fixed angle rotation in the order z-y-z by angles -90°, +90°, +180°. 
 
As described in pages 49-53 in Spong, performing a set of rotations in relative coordinates 
results in the same configuration as performing these rotations in the reverse order in absolute 
coordinates.  Note that this would mean your answers to A) and B) should therefore be 
identical. Similarly, you can check that answer C) and D) are the same, as well. 
 
Note: It is probably wise to sketch the “intermediate” orientation above, rather than doing all 
rotations “in your head”! 
 
3) Degrees of Freedom (DOF). In the figure below, a 2-link robot arm is mounted to a rolling 
base.  The system therefore has 3 degrees of freedom: 1 prismatic joint (x) and 2 rotational joints 
(θ1 and θ2).  As in problem 1, assume the end effector is a small tool at the tip of the last (most 
distal to the cart) link. The position and orientation of the end effector can be written as: 

(xe, ye, θe) 
where all three degrees of freedom are with respect to the absolute coordinate frame (indicated 
by the dashed lines in the figure).   
 

 
Figure 3. 3DOF robot system for problem 3. 
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Assume allowable motions are limited to: 0 180°, 0, 1.5 (m), 1 (m). 
 
 A) Sketch the reachable workspace for the end effector. Label carefully. 
 

B) Along the line 0, what is the range of values possible for θe, as a function of ye? 
You may answer either with an analytic expression (calculated by hand) or by submitting 
MATLAB code and a plot of the bounds on θe and ye varies. 

 
4) Singularities.  Below is a figure of a mechanism constrained to a single degree of freedom, x, 
at the output. The relationship between  and x is: 

2  
 

 
Figure 4. 1 DOF mechanism for problem 4. 

 
 A) Derive the relationship between  and . 

B) Assume 0, and we desire 1 (m/s).  What must  be to achieve this? 
C) Assume , and we desire 1 (m/s).  What must  be to achieve this? 
D) Assume 1.8 , and we desire 1 (m/s).  What must  be to achieve this? 
E) Assume 2.0 , and we desire 1 (m/s).  What must  be to achieve this? 
 

Configuration E is known as a “singularity”. It is a configuration in which it becomes impossible 
to move in a particular location: that is, note that 0 is impossible at 2.0 . Singularities 
can be “dangerous” places to operate, because (often) they are configurations near which the 
robot’s input velocity (here, ) must “blow up”, unbounded, to achieve a finite output velocity at 
the end effector. This phenomenon explains (in part) why humanoid robots often avoid operating 
with legs “fully extended”, near a singularity. 
 
5) Work and Mechanical Impedance.  Conservative vs. non-conservative forces. 
 

 
Figure 5. Mass, viscous damping, and spring impedance elements (problem 5). 
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Masses (or inertia) and springs are conservative impedances, while damping is non-conservative: 
a dashpot (mechanical resistance) or an electrical resistor dissipates energy.  For each of the 3 
mechanical impedances in Figure 5 (A,B, and C), calculate the work done (i.e., the integral of 
force times velocity) by moving point “p” from the state ( 0, =0) to the state ( 3 (m), 

=3 (m/s)) in each of the following two ways: 
I. 2 seconds of constant acceleration at 0.5 (m/s2), then 1 second at 2.0 (m/s2). 

II. 1 second at 3.0 (m/s2), then 0.5 seconds at 0 (m/s2). 
D) Do your results make sense, given that damping is non-conservative, while inertia and 
stiffness are conservative impedance elements? (Hint: which are “path dependent”?) 

 
6) Analogous mechanical and electrical impedances as “circuit elements”. Figure 6 shows a 
4th-order (translational mechanical) system (at right) and an analogous circuit structure (at left). 
 

 
Figure 6. Mechanical impedances in a circuit (problem 6). 

 
A) Use the definitions given in class for mechanical impedance, , and for 

electrical impedance, , to solve for, , , and  in the circuit diagram. 

B) Solve for the transfer functions  and  . 
 
7) Reflected inertia and mechanical impedance.  
 

 
Figure 7. Motor, transmission, and lab (problem 7). 
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Figure 7 shows a system with a motor driving a load.  In the lefthand diagram,  (motor 
velocity) and  (load velocity) are simply related through the gear ratio: .  In the 
righthand diagram, there is now a spring element, with stiffness kg, between the larger gear and 
the load inertia, JL. This spring models the compliance that is sometimes a noticeable factor 
in real transmission systems, and it changes the dynamics from a 2nd‐order system to a 4th‐
order system.   
 
Note,  the  lefthand system is one we have already considered  in class  Lecture 4 . Also,  if 
you  look  carefully,  you  should  notice  that  the  righthand  system  is  intentionally   very 
similar to the translational mechanical system depicted in problem 6. 
 
A  Solve for the transfer functions   and   for the system with no shaft compliance 
that is, in the limit as kg become infinitely stiff . 

 
B) Solve for the transfer functions  and  for the system with shaft compliance. 
 


