Homework 2

This assignment focuses on the Jacobian matrix and on motion planning for nonholonomic wheeled systems. Note that although the omnibot discussed throughout has 3 independent degrees of freedom (locally), we actually require 5 total generalized coordinates (globally) to describe the position and orientation of the robot, (x_{b}, y_{b}, and ϕ_{b}), and the rotations of the wheels, $\left(q_{1}, q_{2}\right.$, and $\left.q_{3}\right)$. (Because ϕ_{b} can be written directly as a function of q_{1}, q_{2}, and q_{3}, there are only 5 independent generalized coordinates required to describe the system completely, rather than 6.)

Problem 1) Derive the Jacobian matrix that relates joint velocities, $\dot{q}=\left[\begin{array}{lll}\dot{q}_{1} & \dot{q}_{2} & \dot{q}_{3}\end{array}\right]^{T}$ (i.e., wheel rotations,) to velocities of the center of body of the vehicle chassis, $\dot{\xi}_{I}=\left[\begin{array}{lll}\dot{x}_{b} & \dot{y}_{b} & \dot{\phi}_{b}\end{array}\right]$, where the subscript I indicates that coordinates are with respect to the global (aka "inertial") reference frame. (Recall the Jacobian is defined by: $\dot{\xi}=J \dot{q}$.) For full credit, your derivation should include steps such as 1A through 1C below; parts 1D and 1E are required MATLAB. Pages 47-60 in the Siegwart handout (from Lecture 7) may be helpful; equation (3.19) has the essential relationship you are trying to derive!

Figure 1. Left: Omnibot, with global (aka Inertial) and local (aka Relative) coordinate frames aligned. Right: Relative frame is now offset and rotated, wrt inertial frame.

Figures 1 above defines ξ_{I}. Where each wheel contacts the ground, there is a local coordinate frame, $\left(x_{i}, y_{i}\right)$. For the $i^{\text {th }}$ wheel, x_{i} points radially outward from the body, along the direction of the wheel axis, and y_{i} is oriented 90 degrees counter-clockwise to this (as viewed from above). The rotation of the $i^{\text {th }}$ wheel is the $i^{\text {th }}$ joint angle, q_{i}, where counter-clockwise rotation of the wheel about the x_{i} is considered the "positive" direction of rotation for q_{i}. The wheel has a radius of r_{w}, thus:

$$
\dot{y}_{i}^{b}=-r_{w} \dot{q}_{i}
$$

That is, as the wheel rotates in the "positive" direction, the instantaneous motion along the y_{i}^{b} axis is "negative", scaled by the wheel radius. Note the superscript "b" is simply a reminder that y_{i} is a coordinate defined with respect to the BODY of the vehicle: the instantaneous direction of y_{i} actually points depends on the rotational orientation of the body, ϕ_{b}.

1A) [1A is optional; however, you must provide some similar derivation leading to 1 D and 1E!] Write expressions for the x and y coordinates of each wheel contact point with respect to the origin of the global coordinate frame, x_{i}^{o} and y_{i}^{o}, in terms of the body coordinates (x_{b}, y_{b}, and ϕ_{b}), the distance L from the center of body to each wheel contact point, and the angle, η_{i}, of each wheel's coordinate from with respect to the body coordinate from. (i.e., $\eta_{1}=-120^{\circ}$, $\eta_{1}=0^{\circ}, \eta_{3}=120^{\circ}$)

1B) [1B is optional; however, you must provide some similar derivation leading to 1 D and 1E!] Differentiate your answer in 1A to derive expressions for \dot{x}_{i}^{o} and \dot{y}_{i}^{o}, in terms of the body coordinates (x_{b}, y_{b}, and ϕ_{b}) and the body velocities ($\dot{x}_{b}, \dot{y}_{b}, \dot{\phi}_{b}$).

1C) [1C is optional; however, you must provide some similar derivation leading to 1 D and 1E!] We still need to relate wheel rotations to body motion. Derive an expression relating \dot{y}_{i}^{b} (which is linearly related to wheel rotation) to $\dot{x}_{i}^{o}, \dot{y}_{i}^{o}, \dot{\phi}_{b}$, and the geometry for each wheel

1D) Finally, write a MATLAB function that combines all results above to solve for the $3 x 3$ matrix F , below, that can transform desired vehicle velocities to required joint velocities:

$$
\dot{q}=\frac{-1}{r_{w}} \cdot\left[\begin{array}{c}
\dot{y}_{1}^{b} \\
\dot{y}_{2}^{b} \\
\dot{y}_{3}^{b}
\end{array}\right]=F\left[\begin{array}{l}
\dot{x}_{b} \\
\dot{y}_{b} \\
\dot{\phi}_{b}
\end{array}\right]=F \dot{\xi}
$$

Assume $r_{w}=0.032$ (meters) and $L=0.146$ (meters). You function should take the current rotation of the vehicle, ϕ_{b}, as an input.

1E) Recall the Jacobian is defined as: $\dot{\xi}=J \dot{q}$. Thus, assuming F is invertible, then $J=F^{-1}$. Using MATLAB, numerically calculate the value of J for ϕ_{b} of $0,30,45$, and 90 degrees.

Problem 2) Using your code from Problem 1, write additional MATLAB code to generate joint trajectories to move the center of body of the robot in a square pattern. Use 1 meter length sides for your square. For this problem, you may assume the vehicle moves at a constant velocity along each of the four sides of the path.

Problem 3) Now, ensure that your motions are "smooth". Recall that at peak power, the motor spins at only about $950 \mathrm{deg} / \mathrm{s}$ (roughly) without a load; it may spin a bit slower when moving the vehicle. Also, there is a time constant of at least .06 seconds for the motor to reach its peak velocity. It is important to "ramp up" to full speed, to achieve accurate trajectories. Also, unlike a robot arm with a fixed based, the final position of robot depends on the order in which joint commands are executed; therefore, it is important none of the wheels "lags behind" the others. Smoothing out planned trajectories will help in achieving this.

For problem 3, write a MATLAB function that modified the joint trajectories from Problem 2, so that motions are commanded more smoothly. It is up to you to define appropriately inputs to your function.

Problem 4) Sketch (on paper) the structure for a feedforward compensator that will generate a signal to be added to the feedback "power level" command to the motor. Use your motor model developed in Labs 1-3.

Problem 5) Write MATLAB code to convert a trajectory of $\operatorname{xi}(\mathrm{t})(\xi(t))$ coordinates to $\mathrm{q}(\mathrm{t})$ coordinates.

Problem 6) Write MATLAB code to convert a trajectory of $\mathrm{q}(\mathrm{t})$ coordinates to $\mathrm{xi}(\mathrm{t})$ ($\xi(\mathrm{t})$) coordinates.

Assume for both Problems 5 and 6:

- $\quad x i(t)$ contains three coordinates with respect to an absolute frame: $x(t)$, $y(t)$, and phi_b(t).
- $q(t)$ contains three coordinates for motor angle in degrees: $q 1(t)$, $q 2(t)$, and $q 3(t)$.

