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Homework 1 (Due Tuesday, May 17, at 5pm) 
 
1) PID controller tuning via Ziegler-Nichols guidelines.  In Lecture 5, we reviewed two 
methods for obtaining an initial set of gains for a proportional-integral-derivation (PID) 
controller, based only on a set response for the system.  The resulting closed-loop system 
typically requires further fine-tuning; however, there are often advantages in finding approximate 
control gains rapidly. In particular, this method can be useful when a model for the plant does 
not exist, and/or when further system ID (to obtain a frequency response plot) requires the 
implementation of a “good” controller. 
 
Although this problem looks long, it should be relatively straight-forward to complete rapidly. 
Parts a and b each use the “first method” of Ziegler and Nichols, which they proposed in a paper 
back in 1942. (Wow, that’s old!) Part c uses a “second method”. In all cases, we will assume the 
following form for the PID controller:    ܥሺݏሻ ൌ ܭ  ቀ1 ൅ ଵ

ఛ೔௦
൅ ߬ௗݏቁ ൌ ܭ ൅ ቀ௄

ఛ೔
ቁ · ଵ

௦
൅ ሺ߬ܭௗሻݏ 

 
Figure 3.1a – Open-loop system step response. Position (top) and velocity (bottom) are both shown. 

 
Ziegler-Nichols first method.  This method simply requires estimating two values from a unit 
step response for the open-loop system.  To do so, we first draw a tangent line at the inflection 
point in the S-shaped unit step response for the open-loop system, as shown by the dashed line in 
Figure 3.1a. Note that the inflection point is the location with the peak slope (i.e., highest 
velocity). Next, estimate the following time parameters: 1) The location, “L”, in which a tangent 
line drawn at the inflection point intersects the time axis. 2) The time between the intersection of 
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the tangent line with y=0 and with y=1, which we will call “T”.  Note also that T=1/R (with units 
adjusted appropriately), where R is the peak velocity (i.e., the velocity at the inflection point). 
Once L and T have been estimated (this has been done for you in Figure 3.1a…), the suggested 
gains for the PID controller are then: 
 

ܭ ൌ 1.2 ்
௅

ൌ ଵ.ଶ
ோ௅

 , ߬௜ ൌ ௗ߬  , ܮ2 ൌ ௅
ଶ
 

 
a) For part a, L and T are clearly labeled in Figure 3.1a.  For simulation purposes, assume that 
the open loop plant for Figure 3.1a is given by the following transfer function: 
 

ሻݏ௔ሺܩ ൌ
1݁4ሺݏଶ ൅ ݏ200 ൅ 5݁4ሻ

ሺݏ ൅ 500ሻሺݏଶ ൅ ݏ10 ൅ 125ሻሺݏଶ ൅ ݏ160 ൅ 8000ሻ 

 
i) Simulate and submit a plot of the step response of the closed-loop system, using the nominal 
PID gains. What is the percent overshoot, approximately? 
 
ii) Now, tweak the PID gain(s) to reduce the overshoot to between 5% and 10%. Plot the 
resulting response, and clearly state the gains you used. (Hint: Hopefully, you only need to 
change Kp, leaving the zeros in C(s) unchanged…) 
 
b) Repeat all of part a) for the system shown in Figure 3.1b. Begin by estimating T and L. 

 
Figure 3.1b - Open-loop system step response. Position (top) and velocity (bottom) are both shown. 
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To tune the controller for part b, assume the open-loop plant is: 
 

ሻݏ௕ሺܩ ൌ
125,000ሺݏ ൅ 400ሻ

ሺݏ ൅ 1000ሻሺݏଶ ൅ ݏ60 ൅ 2500ሻ 

 
c) Ziegler-Nichols second method, or “ultimate cycle” method. Sometimes, the open-loop 
system will not have a steady-state response to a unit step input. (For example, the motors in the 
Lego systems will spin continuously, so the position output approaches a ramp over time.) In 
such situations, the system can first be controlled with a simple, proportional (P) gain that has 
been increased to the point where the system is almost “marginally stable”. In other words, the 
gain is increased to a value Kcrit for which continuous oscillations in the output are observed. 
 
Once the critical gain, Kcrit, for continuous (marginally stable) oscillations is found, we then 
define the period of time for a single oscillation as Pcrit.  The PID gains are then set initially to 
the values given below: 
 

ܭ ൌ ௖௥௜௧ , ߬௜ܭ0.6 ൌ ௉೎ೝ೔೟
ଶ

 ,  ߬ௗ ൌ ௉೎ೝ೔೟
଼

 
 
i) Use the ultimate cycle method to find initial PID gains for the system shown in Figure 3.1c. 
This figures shows the response of the system when a proportional controller is used with a gain 
of 97; that is, we may assume here that ܭ௖௥௜௧ ൎ 97. 
 

 
Figure 3.1c – Data for ultimate cycle method. Shown above is the closed-loop response when K=97. 
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ii) As before, tune the initial PID controller and include a step response and set of gains as your 
solution. However, in this case, aim for 25% overshot. When simulating the closed-loop 
response, the actual plant is: 

ሻݏଷሺܩ ൌ
10,000ሺݏ ൅ .01ሻሺݏ ൅ 0.5ሻ

ݏሺݏ ൅ 2ሻሺݏ ൅ 8ሻሺݏ ൅ 50ሻሺݏ ൅ 100ሻ 

 
2) Feedforward. Recall (from Lecture 5) that feedforward control can sometimes be used to 
(theoretically) result in zero steady state error (if there are no external disturbances to the 
system).  Also recall that the required transfer function for the feedforward portion, F(s), is the 
inverse of the plant, G(s), and that this only works if the resulting F(s) is stable. 

 
Figure 3.2 – Feedforward configuration, from Spong (Figure 6.17, page 218). 

 
For all parts below, assume the open-loop plant is: ܩሺݏሻ ൌ  ଵ

௃௦మା஻௦
ൌ ଵ

ଶ௦మାଵ଴௦
 

 
a) First, just assume F(s)=0. Create a PD feedback controller, H(s), such that the closed-loop 
response has a natural frequency, ߱௡, of 10 rad/s and a damping ratio, ߞ, of 0.6.  Generate a step 
response of the closed-loop response, using MATLAB. 
 
b) Now, also include a feedforward controller, ܨሺݏሻ ൌ  .ሻ, in addition to H(s) from part aݏሺܩ/1
Generate a step response of the closed-loop response, using MATLAB.   
 
c) Using the same transfer functions for H(s) and F(s) from parts a and b, now assume that the 
actual plant changes. Specifically, on a single set of axes, generate step responses for each of the 
following 4 scenarios, each of which involves being off by a factor of 2 in either J or B: 
 i) J=1, B=10 
 ii) J=4, B=10 
 iii) J=2, B=5 
 iv) J=2, B=20 
(Be sure to label which plot is which!) 
 
3) Decay envelopes for Coulomb friction vs viscous damping. Viscous damping is a linear 
loss term which can be modeled with ease in a transfer function and which results in exponential 
decay envelopes. Coulomb friction is a nonlinear loss effect which cannot be incorporated 
precisely into a transfer function and which results in a decay envelope with a constant slope 
(i.e., the decay envelope has straight sides).  There are a lot of hints throughout this problem, 
which may be helpful. The questions you must actually answer are written in bold. 
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Figure 3.3a – Step response for a system with viscous damping. 

 
a) Figure 3.3a shows the step response of a spring-mass system where m=1kg and k=900 N/m. 
The EOM is: ݉ݔሷ ൅ ሶݔܾ ൅ ݔ݇ ൌ 0, where losses are due to linear, viscous damping. 
 
i) From the step response, estimate the linear damping, b.  
 
Hint, simulate with MATLAB to check your answer! Once you define variables m, b, and k, you 
can see a step response by typing (for example): 
 

step(tf([1],[m b k])) 
 

Note that the decay envelope of the response is defined by the real part of the poles of the 
system.  The characteristic equation for the system (compare with the EOM…) can be written as: 
 

ଶݏ ൅ ݏ௡߱ߞ2 ൅ ߱௡
ଶ ൌ 0 

 
If the system is underdamped, this equation has complex roots at ݏ ൌ െ߱ߞ௡ േ ߱ௗ݆, where 
߱ௗ ൌ ߱௡ඥ1 െ  .ଶߞ
 
ii) Using MATLAB, produce a plot of the approximate exponential decay envelope 
bounding the response in Figure 3.3a.  For this system, what are: the time constant of the 
decay envelope, ࣓࢔, and ࣀ? 
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Figure 3.3b – Step response for a system with Coulomb friction. 

 
b) Figure 3.3b also shows the step response of a spring-mass system where m=1kg and k=900 
N/m, except here losses are due to nonlinear friction. The equation of motion here is: 
 

ሷݔ݉ ൅ ሶሻݔሺ݊݃݅ݏ݂ ൅ ݔ݇ ൌ 0 
 
i) The system starts at x=8 meters at t=0. When the system comes to rest, what is 
(approximately) the total path distance, xpath, the mass has moved? (For example, if the mass 
goes from +8 to -8 and back to +8, the path distance would be 2x16=32 meters.) Reason about 
the geometry of the response curve to solve this… 
 
ii) Note that the magnitude of the friction force is a constant, f, any time the mass is moving. 
Also note that the total energy dissipated will be equal to: ܧ௟௢௦௦ ൌ ׬  Write an  .ݔሶሻ݀ݔሺ݊݃݅ݏ݂
expression for Eloss in terms of the variable f and xpath. (Yes, this is a simple equation!) 
 
iii) The initial energy in the system is equal to the potential energy in the spring: ଵ

ଶ
 ଶ.  Theݔ݇

response slows down because this initial energy is dissipated, due to friction. Solve for f. 
 
c) Note in Figure 3.3b that the response does NOT come to rest at x=0. (The final value on the y 
axis is offset from 0.)  Explain how this is possible. Will the final value be different, given 
different initial conditions? Why or why not? 
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4) Shaft compliance. In this problem we will look at the effects of shaft compliance 
(“springiness”) on control. Specifically, recall that it is important to know whether your sensor is 
measuring position on the same side vs on the opposite side to the actuator. 
 

 
Figure 3.4a – Model of a system with shaft compliance. 

 
For the system shown in Figure 3.4a, there are two inertias, Jm and JL, each associated with a 
degree of freedom. Correspondingly, there are two equations of motion, representing the 
relationship between total torque and angular acceleration (analogous to “F=ma”, except 
balancing torque, instead of force).  These two equations can be found by inspection, by 
identifying the torque-generating elements attached to each mass, respectively. The “motor” side 
(m) is driven by ߬௠, with both damping, െܤ௠ߠሶ௠, and a spring, ݇ሺߠ௅ െ  ௠ሻ, attached to theߠ
mass: 

߬௠ െ ሶ௠ߠ௠ܤ െ ௠ߠ݇ ൅ ௅ߠ݇ ൌ  ሷ௠ߠ௠ܬ
 

At the “load” side (L), terms are similar, except there is a different damper attached (only to the 
load side), and there is now no driving torque: 
 

െܤ௅ߠሶ௅ െ ௅ߠ݇ ൅ ௠ߠ݇ ൌ  ሷ௅ߠ௅ܬ
 

Figure 3.4b shows a block diagram of the system dynamics.  Values for parameters are: 
௠ܬ ൌ 1 (kg*m^2)      ܬ௅ ൌ 2 (kg*m^2)      ݇ ൌ 500 (N*m/rad)     ܤ௠ ൌ ௅ܤ ൌ 20 (N*m/(rad/s)) 

 

 
Figure 3.4b – Block diagram for system with shaft compliance. 

 

a) Derive the transfer functions from torque to motor angle, ఏ೘ሺ௦ሻ
ఛ೘ሺ௦ሻ

, and from torque to load angle, 
ఏಽሺ௦ሻ
ఛ೘ሺ௦ሻ

.  Use the bode command in MATLAB to produce Bode plots for each of the two transfer 
functions on the SAME SET OF AXES.  You should see that the frequency responses look 
similar at “low” frequencies but differ in important ways at “high” frequency. 
 
b) Derive the closed-loop transfer function for each system using a proportional controller with 
௣ܭ ൌ 500. Plot step responses for each of the resulting systems on the SAME SET OF AXES. 
You should see that the overshoot is larger when ߠ௅ is used for feedback than when ߠ௠ is used. 
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Hint: Note Figure 3.4b shows a positive feedback.  Be careful to close the loop appropriately, as 
shown in Figure 3.4c. 

 
Figure 3.4c – Closing a loop with “positive feedback”. 

 

c) Design a PD controller, ܥሺݏሻ ൌ ݏሺܭ  ൅ ܽሻ, to get a faster closed-loop step response for , ఏ೘ሺ௦ሻ
ఛ೘ሺ௦ሻ

. 
For example, aim for the step response to settle to within 5% of its final value within about 0.1 
seconds. (Note, “a” sets the location of the zero. Set this first, to add phase at crossover; then set 
K to adjust the crossover frequency.) Plot the resulting step response.  Try to use your new PD 
controller for  ఏಽሺ௦ሻ

ఛ೘ሺ௦ሻ
.  Explain why controlling ఏಽሺ௦ሻ

ఛ೘ሺ௦ሻ
 is more challenging. (I suggest using your 

Bode plots from part a to answer.) 
 
5) Jacobians. 

 
Figure 3.5 – 2-link arm for Jacobian calculation in Problem 3.5. 

 
a) Calculate the Jacobian matrix for the 2-link arm shown in Figure 3.4 in the configuration 

shown. Recall the Jacobian relates joint velocities to end effector velocities:  ൤ݔሶ
ሶݕ ൨ ൌ ܬ ቈߠሶଵ

ሶଶߠ
቉ 

 
b) Assume we wish to throw a ball, to be released when the arm is in this position.  We desire a 
45 degree trajectory, with ݔሶ  = -1.5 m/s and ݕሶ  = +1.5 m/s.  Calculate ߠሶଵ and ߠሶଶ to achieve this. 
 
c) Assume the arm is in the same configuration and is required to hold a 1kg mass. In this static 
configuration, what are the torques required at each of the arm joints, ߬ଵ and ߬ଶ, to produce the 
required static force to support the weight of the mass against gravity (9.8 m/s^2)? 


