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1 A Note to the Student

These notes are very much a work in progress. Please check the web-site
frequently for updates.

These notes do not attempt to explain matrix analysis or even linear algebra. For
that I recommend other texts. For example the chapter on Matrix Arithmetic is
more of an extended exercise than an explanation.

If you need explanations then G. Strang’s Linear Algebra and its Applications, is a
very good introduction for the neophyte.

On the other hand, if you have had a prior introduction to linear algebra, then
C. Meyer’s Matrix Analysis and Applied Linear Algebra is an excellent choice.

For students interested in systems theory, controls theory or operator theory I rec-
ommend H. Dym’s Linear Algebra in Action.

Finally, for students of mathematics, I suggest A (Terse) Introduction to Linear
Algebra by Y. Katznelson and Y. R. Katznelson.

After this class to see how the ideas presented here can be generalized to the infinite-
dimensional setting I recommend I. Gohberg, M. Kaashoek and S. Goldberg’s Basic
Classes of Linear Operators. Another excellent book is P. Lax’s Functional Analysis.

For more results in matrix analysis with good explanations nothing can beat R. Horn
and C. Johnson’s classic Matrix Analysis.

The serious student of mathematics will also want to look at R. Bhatia’s Matrix
Analysis.

For all algorithmic issues Matrix Computations by G. H. Golub and C. van Loan is
a classic source.

I hope these notes relieve the student of the burden of taking handwritten notes in
my lectures. Anyway, a good way to learn the subject is to go through these notes
working out all the exercises.

These notes are still a work in progress—typos abound. Please email them me as
you find them (email: shiv@ece.ucsb.edu).

Ideally there should be no errors in the proofs. If there are I would appreciate
hearing about them.
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There are many ways to present matrix analysis. My desire has been to find short,
constructive approaches to all proofs. If you have a shorter and more constructive
proof for any of the material please let me know.

Almost all proofs presented here are well-known. If at all there is a claim to in-
novation it might be in the proof of the Jordan decomposition theorem. What is
uncommon is a presentation of a version of the Riesz–Thorin interpolation theorem,
and a related result of Holmgren. The latter especially is a very useful result that
is not as well-known as it should be. Both of these are based on the more general
presentation in Lax’s Functional Analysis book.

The last (incomplete) chapter on tensor algebra is very much a work in progress and
could easily stand a couple of re-writes. Use with a great deal of caution.
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2 Matrix Arithmetic

2.1 Notation

g ◦ f denotes the composition of the function g with the function f ; that is, (g ◦ 1◦
f)(x) = g(f(x)).

The set of all positive integers. 2N

The set of all integers. 3Z

The set of all real numbers. 4R

The set of all complex numbers. 5C

For us scalars will denote either real numbers or complex numbers. The context will 6Scalar
make it clear which one we are talking about. Small Greek letters α, β, γ, . . . will
usually denote scalars.

A matrix is a rectangular array of scalars. If A is a matrix then the scalar at the 7Matrix
intersection of row i and column j is denoted by Ai,j .

An m×n matrix has m rows and n columns. One, or both, of m and n can be zero. 8m × n

The set of all real m× n matrices. 9Rm×n

The set of all complex m× n matrices. 10Cm×n

Rn×1, also called the set of column vectors with n real components. 11Rn

Cn×1, also called the set of column vectors with n complex components. 12Cn

A block matrix is a rectangular array of matrices. If A is a block matrix then the 13Block Matrix
matrix at the intersection of block row i and block column j is denoted by Ai,j . We
will assume that all matrices in block column j have nj columns, and all matrices
in block row i will have mi rows. That is we will assume that Ai,j is an mi × nj
matrix. We will denote the block matrix A pictorially as follows

A =


n1 · · · nl

m1 A1,1 · · · A1,l
... ... ... ...
mk A1,k · · · Ak,l

.

This is also called a k × l block partitioning of the matrix A.



7

2.2 Addition & Subtraction

For any scalar α 14Scalar mul-
tiplication

αAm×n = Bm×n
α ( a )1×1 = ( αa )1×1

α

(
A1,1 A1,2

A2,1 A2,2

)
=

(
αA1,1 αA1,2

αA2,1 αA2,2

)
The above definition of scalar multiplication must be interpreted as follows. The
first equation implies that the argument A and the result B must have identical
number of rows m, and columns n. Therefore if either m or n is zero there are no
entries in B and nothing to compute. If the argument is a 1× 1 matrix the second
equation states how the result must be computed. If the argument is larger than
that, the third equation states how the scalar multiplication can be reduced into at
most four smaller scalar multiplications.

Prove that if αA = B then αAi,j = Bi,j .Exercise 1

15Addition

Am×n + Bm×n = Cm×n
( a )1×1 + ( b )1×1 = ( a + b )1×1(

A1,1 A1,2

A2,1 A2,2

)
+

(
B1,1 B1,2

B2,1 B2,2

)
=

(
A1,1 + B1,1 A1,2 + B1,2

A2,1 + B2,1 A2,2 + B2,2

)
Prove that if A + B = C, then Ai,j + Bi,j = Ci,j .Exercise 2

A−B = A + (−1)B. 16Subtraction

Prove that if A−B = C, then Ai,j −Bi,j = Ci,j .Exercise 3

We denote the m × n matrix of zeros by 0m×n. We will drop the subscripts if the 170
size is obvious from the context.

Show that A + 0 = A and 0A = 0.Exercise 4
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2.3 Multiplication

18Multiplication
Am×kBk×n = Cm×n
( )1×0 ( )0×1 = ( 0 )1×1

( a )1×1 ( b )1×1 = ( ab )1×1(
A1,1 A1,2

A2,1 A2,2

)(
B1,1 B1,2

B2,1 B2,2

)
=

(
A1,1B1,1 + A1,2B2,1 A1,1B1,2 + A1,2B2,2

A2,1B1,1 + A2,2B2,1 A2,1B1,2 + A2,2B2,2

)
Show that if AB = C then

∑
k Ai,kBk,j = Ci,j .Exercise 5

Show that A ( B1,1 B1,2 · · · B1,n ) = ( AB1,1 AB1,2 · · · AB1,n ). This showsExercise 6
that matrix multiplication from the left acts on each (block) column of the right ma-
trix independently.

Show thatExercise 7 
A1,1

A2,1
...

Am,1

B =


A1,1B
A2,1B

...
Am,1B


This shows that matrix multiplication from the left acts on each (block) row of the
left matrix independently.

Show thatExercise 8

( A1,1 A1,2 · · · A1,k )


B1,1

B2,1
...

Bk,1

 =
k∑
l=1

A1,lBl,1

This is called a (block) inner product. Quite confusingly, when all the partitions
have only one row or column, each term on the right in the sum is an outer product.
In that case this formula is called the outer product form of matrix multiplication.
Usually the term inner product is reserved for the case when A has one row and B
has one column.

Show thatExercise 9 
A1,1

A2,1
...

Am,1

 ( B1,1 B1,2 · · · B1,n ) =


A1,1B1,1 A1,1B1,2 · · · A1,1B1,n

A2,1B1,1 A2,1B1,2 · · · A2,1B1,n
... ... · · · ...

Am,1B1,1 Am,1B1,2 · · · Am,1B1,n


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This is called a (block) outer product. Usually the term outer produce is reserved
for the case when A has one column and B has one row.

A square matrix L is said to be lower triangular if all its entries above the diagonal 19Lower trian-
gular matrix are zero; that is, Li,j = 0 for i < j.

Show that the product of lower triangular matrices is lower triangular.Exercise 10
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2.4 Inverses

Let A and B be two sets. A function f : A → B is said to have a left inverse 20Left inverse
g : B → A if g ◦ f is the identity map on A.

Show that a function has a left inverse iff it is one-to-one.Exercise 11

When does a one-to-one function have more than one left inverse?Exercise 12

Let A and B be two sets. A function f : A → B is said to have a right inverse 21Right inverse
g : B → A if f ◦ g is the identity map on B.

Show that a function has a right inverse iff it is onto.Exercise 13

When does an onto function have more than one right inverse?Exercise 14

The n × n identity matrix is denoted by In and is defined to have ones on the 22Identity
diagonal and zeros every where else. That is, Ii,i = 1 and Ii,j = 0 if i 6= j.

Show that ImAm×n = Am×nIn = Am×n.Exercise 15

We will restrict our attention to linear left and right inverses of matrices. So we
re-define these notions to suit our usage.

A−L is said to be a left inverse of A if A−LA = I. 23Left inverse

From now on the subscript on the identity matrix that denotes its size will be
dropped if it can be inferred from the context. So, in the above definition, it is clear
that the size of the identity matrix is determined by the number of columns of the
matrix A.

How many rows and columns must A−L have?Exercise 16

A−R is said to be a right inverse of A if AA−R = I. 24Right inverse

How many rows and columns must A−R have?Exercise 17

To unify our definition of matrix inverses with function inverses we can think of a
matrix Am×n as a function that maps vectors in Cn to vectors in Cm by the rule
y = Ax for all x ∈ Cn.

Verify that the above statement makes sense; that is, if A−L is a matrix left inverseExercise 18
for Am×n, then it is also a left inverse for A viewed as a function from Cn to Cm.

A−1 is said to be an inverse of A if it is both a left and right inverse of A. 25Inverse
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Show that if A−1 exists then it must be unique. Hint: Use Exercise 11, Exercise 12,Exercise 19
Exercise 13, Exercise 14 and Exercise 18.

Example 1 (
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
when ad− bc 6= 0.

Example 2 (
A 0
B C

)−1

=

(
A−1 0

−C−1BA−1 C−1

)
when A−1 and C−1 exist.

FindExercise 20 (
A B
0 C

)−1

when A−1 and C−1 exist.

Example 3

( I 0 )

(
I
X

)
= I

but (
I
X

)
( I 0 ) =

(
I 0
0 0

)
.

This shows that a left inverse need not be a right inverse and vice versa.

Show that the matrixExercise 21 (
I 0
0 0

)
has no left or right inverses. Later we will define the pseudo-inverse of a matrix,
which will always exist.

A square matrix U is said to be upper triangular if all its entries below the diagonal 26Upper trian-
gular matrix are zero; that is, Ui,j = 0 for i > j.

Show that the inverse of an upper triangular matrix exists if all the diagonal entriesExercise 22
are non-zero, and that the inverse is also upper triangular. Hint: Use Exercise 20.

Show that (AB)−1 = B−1A−1 when A−1 and B−1 exist.Exercise 23
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2.5 Transpose

Transpose is denoted by a raised superscript T and is defined by 27Transpose

( a )T1×1 = ( a )1×1(
A1,1 A1,2

A2,1 A2,2

)T
=

(
AT

1,1 AT
2,1

AT
1,2 AT

2,2

)
Show that if Bn×m = AT then A is an m× n matrix and Bi,j = Aj,i.Exercise 24

Show that (A + B)T = AT + BT .Exercise 25

Show that (AB)T = BTAT provided the product AB is well-defined.Exercise 26

Hermitian transpose is denoted by a raised superscript H and is defined by 28Hermitian
transpose

( a )H1×1 = ( ā )1×1(
A1,1 A1,2

A2,1 A2,2

)H
=

(
AH

1,1 AH
2,1

AH
1,2 AH

2,2

)
where z̄ denotes the complex conjugate of z.

Show that if Bn×m = AH then A is an m× n matrix and Bi,j = Āj,i.Exercise 27

Show that (A + B)H = AH + BH .Exercise 28

Show that (AB)H = BHAH provided the product AB is well-defined.Exercise 29

The (Hermitian) transpose is a crucial operator as it lets m × n matrices act by
matrix multiplication on other m× n matrices.

Show that AHA and AAH are well-defined matrix products. Note that in generalExercise 30
A2 is not a well-defined matrix product.
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2.6 Gaussian Elimination

How do we compute a left, right or just plain old inverse of a given matrix A?
Answer: by Gaussian elimination. We will present Gaussian elimination as a matrix
factorization.

Given a permutation σ1, σ2, . . . , σn of the integers 1, . . . , n we can define a permu- 29Permutation
tation matrix P by the equation

P


x1

x2...
xn

 =


xσ1

xσ2...
xσn

 xi ∈ C.

Write P down explicitly when σ1 = 4, σ2 = 1, σ3 = 2, σ4 = 3.Exercise 31

Write P down explicitly in the general case.Exercise 32

Show that PT = P−1.Exercise 33

Show that a product of permutation matrices is another permutation matrix.Exercise 34

If P is a permutation matrix such thatExercise 35

P


x1

x2...
xn

 =


xσ1

xσ2...
xσn

 xi ∈ C.

for some permutation σi of the integers 1, . . . , n find

( x1 x2 · · · xn ) P.

Hint: Transpose.

A lower triangular matrix with ones on the main diagonal is called a unit lower 30Unit lower tri-
angular matrix triangular matrix.

Show that the product of unit lower triangular matrices is unit lower triangular.Exercise 36

Show that a unit lower triangular matrix always has an inverse, which is also unitExercise 37
lower triangular, Hint: Use Example 2 and Exercise 22.

For every m × n matrix A there exists two permutations P1 and P2 such that 31LU
P1AP2 = LU, where L is a unit lower triangular matrix and U is of the form
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U =

( r n− r

r U1,1 U1,2

m− r 0 0

)
,

where U1,1 is an upper triangular matrix with non-zero diagonal entries.

The integer r in the LU factorization of A is called the rank of the matrix A. 32Rank

Give examples of m× n matrices for which the ranks are 0, 1, m and n.Exercise 38

Proof of LU decomposition. The proof is by induction on the matrix size.

Case 1.

I︸︷︷︸
P1

0︸︷︷︸
A

I︸︷︷︸
P2

= I︸︷︷︸
L

0︸︷︷︸
U

In this case U1,1 is empty and the rank r = 0.

Case 2.

I︸︷︷︸
P1

( a )1×1︸ ︷︷ ︸
A

I︸︷︷︸
P2

= I︸︷︷︸
L

( a )1×1︸ ︷︷ ︸
U

If a 6= 0 then r = 1, otherwise r = 0 and U1,1 is empty.

Case 3. Pick two intermediate permutations Q1 and Q2 such that the (1, 1) entry
of Q1AQ2 is non-zero.

Prove that this step is possible if A 6= 0. Otherwise we are done by case 1.Exercise 39

Let

Q1AQ2 =

( 1 n− 1

1 A1,1 A1,2

m− 1 A2,1 A2,2

)
with A1,1 6= 0. Let

L1 =

(
1 0

A2,1A
−1
1,1 I

)
and U1 =

(
A1,1 A1,2

0 A2,2 −A2,1A
−1
1,1A1,2

)
where L1 is a unit lower triangular matrix. L1 is called an elementary Gauss
transform.

Show thatExercise 40
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Q1AQ2 = L1U1.

Let S1 = A2,2 − A2,1A
−1
1,1A1,2, which is called a Schur complement. Note that

S1 is smaller than A. If S1 is empty then we are done. Otherwise, by the induction
hypothesis S1 has an LU decomposition

Q3S1Q4 = L2U2 (2.1)

where Q3 and Q4 are the associated permutation matrices. Substituting this in the
expression for U1 we obtain

Q1AQ2 =

(
1 0

A2,1A
−1
1,1 I

)
︸ ︷︷ ︸

L1

(
A1,1 A1,2

0 QT
3 L2U2QT

4

)
︸ ︷︷ ︸

U1

.

Verify this. Hint: Multiply equation 2.1 from the left by QT
3 .Exercise 41

We can now expand and factor the right hand side of the above expression to obtain

Q1AQ2 =

(
1 0
0 QT

3

)(
1 0

Q3A2,1A
−1
1,1 L2

)(
A1,1 A1,2Q4

0 U2

)(
1 0
0 QT

4

)
.

Verify this.Exercise 42

We observe that (
1 0
0 QT

3

)
and

(
1 0
0 QT

4

)
are permutation matrices.

Prove it.Exercise 43

Therefore their inverses are just their transposes. We can multiply by their trans-
poses on the left and right respectively of the above equation and obtain the desired
LU decomposition of A(

1 0
0 Q3

)
Q1︸ ︷︷ ︸

P1

A Q2

(
1 0
0 Q4

)
︸ ︷︷ ︸

P2

=

(
1 0

Q3A2,1A
−1
1,1 L2

)
︸ ︷︷ ︸

L

(
A1,1 A1,2Q4

0 U2

)
︸ ︷︷ ︸

U

.

¤

Verify that L in the above equation is unit lower triangular and that U has the formExercise 44
promised in the LU decomposition definition 31.
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Write a software program in your favorite programming language to compute theExercise 45
LU decomposition of a matrix.

Gaussian elimination, and hence the LU decomposition, is the heart of matrix alge-
bra. Schur complements are one common manifestation which often goes completely
unnoticed in practice.
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2.7 Solving Ax = b

Given an m×n matrix A and an m× k matrix b how do we find all n× k matrices
x which satisfy the equation Ax = b? Answer: LU decomposition.

Let P1AP2 = LU. Substituting this in the equation for x we obtain the following
set of equivalent equations for x

Ax = b
PT

1 LUPT
2 x = b

UPT
2 x = L−1P1b.

Why do each of the above equations determine exactly the same set of solutions x?Exercise 46

Let

U =

( r n− r

r U1,1 U1,2

m− r 0 0

)
where r is a rank of A and let

PT
2 x = y =

(
r y1,1

n− r y2,1

)
and L−1P1b =

(
r b1,1

m− r b2,1

)
,

with some abuse of notation. Substituting back into the equation for x we obtain(
U1,1 U1,2

0 0

)(
y1,1

y2,1

)
=

(
b1,1

b2,1

)
.

We see that the last block equation requires that b2,1 = 0. Either this matrix
has zero rows and the condition is trivially satisfied, or it does not, and then the
validity of this equation depends entirely on the given b and L and P1. If b2,1 6= 0
then there are no matrices x which satisfy the equation Ax = b. If b2,1 = 0
then we must look at the remaining first block equation U1,1y1,1 + U1,2y2,1 = b1,1.
Since we are guaranteed that U1,1 is invertible we see that the general solution is
y1,1 = U−1

1,1(b1,1 −U1,2y2,1), where we are free to pick y2,1 freely.

Verify this last statement thoroughly; that is, show that any solution y, can beExercise 47
written in this form.

We can state this result more succinctly as
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y =

(
U−1

1,1b1,1

0

)
+

(
−U−1

1,1U1,2

I

)
z,

where z can be chosen freely.

Of course we really want all the solutions x which we now obtain as

x = P2

(
U−1

1,1b1,1

0

)
+ P2

(
−U−1

1,1U1,2

I

)
z, .

whenever b2,1 = 0; otherwise there are no solutions.

Verify that every solution is of this form.Exercise 48

Show that an m×n matrix A has a right inverse iff rank(A) = m. Such a matrix isExercise 49
called a full row-rank matrix. Write down explicitly all right inverses of A. Hint:
I just did it.

Find all x that satisfy the equation xHA = bH explicitly in terms of the LUExercise 50
factorization of A (not AH).

Show that an m× n matrix A has a left inverse iff rank(A) = n. Such a matrix isExercise 51
called a full column-rank matrix. Write down explicitly all left inverses of A in
terms of the LU decomposition of A (not AH).

Show that if a matrix has both a left and right inverse then it is square.Exercise 52

Show that A has a left inverse iff Ax = 0 implies x = 0.Exercise 53

Show that A has a right inverse iff xHA = 0 implies x = 0.Exercise 54
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2.8 Problems

Find all non-zero solutions x of Am×nx = 0. Show that there are non-trivialProblem 1
solutions x 6= 0 if m < n.

Find all matrices b such that Am×nx = b has no solution x. Show that suchProblem 2
matrices b always exist if m > n.

Usually in practice “linear algebra” is needed to analyze linear equations where the
coefficient matrix has some special structure. Here are some simple cases.

Find all matrices X that satisfy the equation AXBT = C, in terms of the LUProblem 3
factorizations of A and B. State the precise conditions under which there are no
solutions.

Let U1 and U2 be two upper-triangular matrices. Let Z be an m × n matrix. LetProblem 4
X be an unknown matrix that satisfies the equation

U1X + XU2 = Z.

A. Give an algorithm to find X in O(mn(m + n)) flops (floating-point operations).

B. Find conditions on U1 and U2 which guarantee the existence of a unique solution
X.

C. Give a non-trivial example (U1 6= 0, U2 6= 0, X 6= 0) where those conditions are
not satisfied and

U1X + XU2 = 0.
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3 Geometry

We will now develop the basic notions of Eulcidean geometry in higher-dimensional
spaces.

3.1 Vector Spaces

We will use F to denote either R or C, and we will call its elements as scalars. 33F

A vector space consists of a set V of vectors and a set F of scalars, an operation 34Vector space
+ : V ×V → V , called vector addition, and an operation called scalar multiplication
from V × F to V , that satisfy the following properties for all u, v, w ∈ V and all
α, β ∈ F:

1. u + v = v + u ∈ V (closed and commutative);

2. (u + v) + w = u + (v + w) (associative);

3. There exists a 0 vector in V such that u + 0 = u (existence of identity);

4. For each u ∈ V there exists an element −u ∈ V such that u+(−u) = 0 (existence
of inverse);

5. uα ∈ V (scalar multiplication is closed);

6. (u + v)α = uα + vα (distributive);

7. u(α + β) = uα + uβ (distributive);

8. u(αβ) = (uα)β (associative);

9. u1 = u (unit scaling).

Note: We will allow the scalar in scalar multiplication to be written on wither side
of the vector it is multiplying. This is possible because both vector addition and
scalar multiplication are commutative, associative and distribute over each other.

Show that the 0 vector in V is unique.Exercise 55

Show that for each v ∈ V there is exactly one vector w such that v + w = 0.Exercise 56

Show that 0v = 0 for all v ∈ V .Exercise 57

Show that (−1)v = −v for all v ∈ V .Exercise 58
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The set of column vectors with n elements drawn from F. 35Fn

Show that Fn is a vector space over the scalars F with the obvious definition ofExercise 59
vector addition and scalar multiplication.

The set of m× n matrices with elements drawn from F. 36Fm×n

Show that Fm×n is a vector space over the scalars F with matrix addition as vectorExercise 60
addition and the usual scalar multiplication.

Note: When the scalar F is obvious, we will abuse notation and call V as the vector
space. There is usually no confusion as to the implied vector addition and scalar
multiplication operations either.
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3.2 Hyper-planes

A subset W of a vector space V is a subspace of V if W is a vector space in its own 37Subspace
right.

Fortunately, it turns out that W is a subspace of V iff it is closed under vector
addition and scalar multiplication.

Prove it.Exercise 61

The nullspace of a matrix A ∈ Fm×n, denoted by N (A), is the set of all column 38Nullspace
vectors x ∈ Fn such that Ax = 0.

Show that N (A) is a subspace.Exercise 62

The range space of a matrix A ∈ Fm×n, denoted by R(A), is the set of all vectors 39Range space
y ∈ Fm such that Ax = y for some vector x. This is also called the column space
of A.

Show that R(A) is a subspace.Exercise 63

N (AH) is called the left nullspace of A. 40Left nullspace

R(AH) is called the row space of A. 41Row space

Show that the intersection of two subspaces is a subspace.Exercise 64

Show that the union of two subspaces need not be a subspace.Exercise 65

Let W1 and W2 be two subsets of the vector space V . W1 +W2 is defined to be the 42Sums of sets
set of all vectors of the form w1 + w2, where w1 ∈ W1 and w2 ∈ W2.

Show that W1 +W2 is a subspace if W1 and W2 are subspaces.Exercise 66

Let W1 and W2 be subspaces. Show that W1 + W2 is the smallest subspace thatExercise 67
contains W1 ∪W2.

Show that R (( A B )) = R(A) +R(B).Exercise 68

Show thatExercise 69

N
((

A
B

))
= N (A) ∩N (B).

If W1 and W2 are subspaces with W1 ∩ W2 = {0}, then W1 + W2 is written as 43Direct sum
W1 ⊕W2, and it is called the direct sum of W1 and W2.
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If v1, v2, . . . , vk (0 < k < ∞) are vectors and α1, α2, . . . , αk are scalars, then the 44Linear combina-
tion vector

∑k
i=1 αivi is called a linear combination of the vectors v1, v2, . . . , vk.

Note that we can write this as

k∑
i=1

αivi = ( v1 v2 · · · vk )


α1

α2...
αk

 .

So matrix vector multiplication results in a linear combination of the columns of the
matrix. Note that the matrix containing the vectors vi must be viewed only as a
block matrix, since the vectors vi are abstract at this point. However, from now on
we will allow such abstract block matrix notation where convenient.

The span of a set of vectors v1, v2, . . . , vk is defined to be the set of all possible linear 45Span
combinations of v1, v2, . . . , vk.

Show that span{v1, v2, . . . , vk} is a subspace.Exercise 70

Show that span{v1, v2, . . . , vk} is the smallest subspace that contains v1, v2, . . . , vk.Exercise 71

Show that span{v1, v2, . . . , vk} = R(( v1 v2 · · · vk )).Exercise 72

Spans are a compact means of specifying a subspace. However, they are not the
most compact necessarily.

A set of vectors v1, v2, . . . , vk is said to be linearly independent if the equation 46Linear In-
dependence

α1v1 + α2v2 + · · ·+ αkvk = 0,

has only the zero solution α1 = α2 = · · · = αk = 0.

A set of vectors v1, v2, . . . , vk is said to be linearly dependent if they are not linearly 47Linear De-
pendence independent.

Show that v1, v2, . . . , vk are linearly independent iff N (( v1 v2 · · · vk )) = 0.Exercise 73

LetExercise 74

A =

(
L
X

)
,

where L is a lower-triangular matrix. Show that the columns of A are linearly
independent if the diagonal entries of L are non-zero.
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A set of vectors v1, v2, . . . , vk is a basis for a subspace W if span{v1, v2, . . . , vk} = W 48Basis
and the vectors v1, v2, . . . , vk are linearly independent.

Suppose a subspace W has a basis with k vectors. Then k is called the dimension 49Dimension
of W and denoted by dim(W) = k.

Implicit in the above definition is that the dimension of a subspace does not depend
on the choice of basis. We prove this now. Assume to the contrary that the subspace
W has v1, v2, . . . , vk as one basis, and w1, w2, . . . , wr as a second basis with r < k <
∞. It follows from the properties of basis that there is an r× k matrix X such that

( v1 v2 · · · vk ) = ( w1 w2 · · · wr ) X.

Since X is fat, N (X) 6= {0}.

Why?Exercise 75

Let 0 6= z ∈ N (X). Then it follows that

( v1 v2 · · · vk ) z = ( w1 w2 · · · wr ) Xz = 0.

Hence v1, v2, . . . , vk are not linearly independent, giving a contradiction.

Let A be an m× n matrix. Find bases forExercise 76

• R(A)

• N (A)

• R(AH)

• N (AH)

explicitly using the LU factorization of A (only). From this establish that

• dim(R(A)) = dim(R(AH)) = rank(A)

• dim(N (A)) + rank(A) = n.

The last formula is called the rank-nullity theorem.

Show that dim(Fn) = n.Exercise 77

Show that dim(Fm×n) = mn.Exercise 78

Let F∞ denote the set of columns vectors with elements drawn from F and indexedExercise 79
from 1, 2, . . .. Show that dim(F∞) is not finite.

Show that for every matrix A there are two full column-rank matrices X and YExercise 80
with the same rank as A, such that A = XYH .
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3.3 Lengths

A norm, denoted by ||·||, is a function from a vector space V over F to R that satisfies 50Norm
the following properties

• ||v|| ≥ 0 for all v ∈ V (positive semi-definiteness)

• ||v|| = 0 iff v = 0 (positive definiteness)

• ||αv|| = |α|||v|| for all α ∈ F and all v ∈ V (homogeneity)

• ||v + w|| ≤ ||v||+ ||w|| for all v, w ∈ V (triangle inequality)

Show that |||v|| − ||w||| ≤ ||v − w||.Exercise 81

Show that norms are continuous functions on Fn. Hint: Let ei denote a basis forExercise 82
Fn. Then

||v − w|| ≤
n∑
i=1

|vi − wi|||ei|| ≤ constant · max
1≤i≤n

|vi − wi|.

The set of vectors with norm ≤ 1 is called the unit ball of that norm. 51Unit Ball

The set of vectors with norm 1 is called the unit sphere for that norm. 52Unit Sphere

A set of vectors in a vector space V is said to be convex if for every pair of vectors 53Convex sets
v and w in the set, and every 0 ≤ λ ≤ 1, the vector λv + (1− λ)w is also in the set.

Show that the intersection of two convex sets is convex.Exercise 83

Show that the sum of two convex sets is convex.Exercise 84

Show that the unit ball of a norm is a convex set.Exercise 85

A function f from a vector space to R is said to be convex if 54Convex function

f (λv + (1− λ)w) ≤ λf(v) + (1− λ)f(w)

for all vectors v and w and 0 ≤ λ ≤ 1.

Show that if f is a convex function then {v : f(v) ≤ γ} is a convex set for all γ.Exercise 86

By considering the function −ex show that the converse is not true.Exercise 87

Show that || · || is a convex function.Exercise 88

We claim that if f : V → R is a function that satisfies the following conditions
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• f(v) ≥ 0 for all v ∈ V

• f(v) = 0 iff v = 0

• f(αv) = |α|f(v) for all α ∈ F and all v ∈ V

• The set {v : f(v) ≤ 1} is convex

then f defines a norm on V .

Show that the ball of radius r, {v : f(v) ≤ r}, is convex.Exercise 89

Show that f (λf(x)y + (1− λ)f(y)x) ≤ f(x)f(y) for all 0 ≤ λ ≤ 1. Hint: f(x)y liesExercise 90
in the ball of radius f(x)f(y).

Finish the proof by picking λ = f(y)/(f(x) + f(y)) in the above inequality.Exercise 91

This shows that the triangle inequality requirement is equivalent to the convexity
of the unit ball.

For x ∈ Fn the p-norm of x, for 1 ≤ p < ∞ is defined to be 55p-norm

||x||p =

(
n∑
i=1

|xi|p
) 1

p

.

For p = ∞ we define the ∞-norm of x to be

||x||∞ = max
1≤i≤n

|xi| .

Show thatExercise 92

lim
p↑∞

||x||p = ||x||∞.

Show that the function || · ||p for 1 ≤ p ≤ ∞ satisfies the first three conditions forExercise 93
being a norm.

Show that the sum of two convex functions is convex.Exercise 94

Assume that the function |x|p is convex when 1 ≤ p < ∞. Or, better yet, prove it.

Show that the function f1(x) = |x1|p is convex if 1 ≤ p < ∞.Exercise 95

Show that the function ||x||pp is convex if 1 ≤ p < ∞.Exercise 96

Show that the maximum of two convex functions is convex.Exercise 97
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Show that ||x||∞ is convex.Exercise 98

Now observe that the unit ball {x : ||x||p ≤ 1} = {x : ||x||pp ≤ 1}. It follows that the
unit balls for p-norms are convex. Hence, by exercise ??, we have established the
triangle inequality for p-norms.

56Minkowski’s
inequality

||x + y||p ≤ ||x||p + ||y||p, 1 ≤ p ≤ ∞.

The case p = 2 is called the Euclidean norm. Observe that

||x||2 =
√

xHx.

Let || · ||α and || · ||β be two norms on a vector space V . The two norms are said to 57Equivalence
of norms be equivalent if there exist two positive finite constants c1 and c2 such that

c1||v||α ≤ ||v||β ≤ c2||v||α, ∀v ∈ V .

All norms on finite dimensional vector spaces are equivalent.Theorem 1

Proof. Since norms are continuous functions it follows that the unit sphere is closed.

Show that the unit sphere is closed.Exercise 99

Since V is assumed to be finite dimensional the unit sphere is compact.

Why?Exercise 100

Therefore the continuous functions || · ||α and || · ||β must both achieve their minimum
and maximum on the unit sphere. From this the existence of the positive finite
constants c1 and c2 follows. (Why?) ¤

Show that for x ∈ Fn, ||x||p ≤ ||x||q for 1 ≤ q ≤ p ≤ ∞.Exercise 101

Show that for x ∈ Fn, ||x||2 ≤
√
||x||1||x||∞.Exercise 102

Establish the following inequalities for x ∈ FnExercise 103

||x||1 ≤
√

n||x||2
||x||1 ≤ n||x||∞
||x||2 ≤

√
n||x||∞

Hint: For the first inequality use the fact that 2xy ≤ |x|2 + |y|2.
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3.4 Angles

Pythagorean Theorem: If x and y are two perpendicular vectors (whatever that
means), they should form a right-angle triangle with x+y as the hypotenuse. Then
the Pythagorean Theorem would imply that

||x + y||22 = ||x||22 + ||y||22.

Simplifying this using the fact that ||x||22 = xHx, we obtain xHy = 0.

Two vectors x and y in Fn are said to be (mutually) orthogonal if xHy = 0. This 58Orthogonal
is denoted by x ⊥ y.

More generally, for vectors in Rn, we define the angle θ between two vectors x and
y via the formula

cos θ =
xTy

||x||2||y||2
.

There are many ways to justify this choice. One supporting fact is the Cauchy–
Buniakowsky–Schwartz (CBS) inequality.

59CBS inequality ∣∣∣xHy
∣∣∣ ≤ ||x||2||y||2.

Given x and y from Fn, find λ∗ such that,Exercise 104

||x + λy||2 ≥ ||x + λ∗y||2

for all λ ∈ F.

Starting fromExercise 105

||x + λ∗y||2 ≥ 0,

derive the CBS inequality.

The CBS inequality is a special case of the Hölder inequality.

60Hölder inequality ∣∣∣xHy
∣∣∣ ≤ ||x||p||y||q,

1

p
+

1

q
= 1.

Prove the Hölder inequality when p = 1 and q = ∞.Exercise 106
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Proof of Hölder inequality. Note that − ln x is convex on (0,∞). Hence, for
x > 0 and y > 0,

− ln (λx + (1− λ)y) ≤ −λ ln x− (1− λ) ln y.

Or, equivalently,

λ ln x + (1− λ) ln y ≤ ln (λx + (1− λ)y)

Exponentiating both sides we obtain

xλy1−λ ≤ λx + (1− λ)y. (3.1)

Therefore it follows that, with λ = 1
p and 1− λ = 1

q ,(
|xi|p

||x||pp

) 1
p
(
|yi|q

||y||qq

) 1
q

≤ 1

p

|xi|p

||x||pp
+

1

q

|yi|q

||y||qq
.

Summing both sides from 1 to n the Hölder inequality is derived. ¤

Show that for x ∈ FnExercise 107

||x||2 ≤
√
||x||p||x||q,

1

p
+

1

q
= 1.

Show thatExercise 108

||x||p = sup
06=y∈Fn

∣∣xHy
∣∣

||y||q
,

1

p
+

1

q
= 1.

For this reason || · ||p and || · ||q are called dual norms whenever p + q = pq. || · ||2 is
the only self-dual norm among the lot and plays a prominent role.



30

3.5 Matrix Norms

The trace of a square matrix is defined to be the sum of its diagonal elements. 61Trace

Show that trace(A + B) = trace(A) + trace(B).Exercise 109

Show that trace(AB) = trace(BA).Exercise 110

The Frobenius norm of a matrix A, denoted by ||A||F , is defined to be
√

trace(AHA). 62Frobenius norm

Show thatExercise 111

||A||2F =
m∑
i=1

n∑
j=1

|Ai,j |2.

Show that the Frobenius norm satisfies all the properties of a norm.Exercise 112

Let || · ||α be a norm on Fn and let || · ||β be a norm on Fm. On Fm×n define the norm 63Induced ma-
trix norm

||A||α,β = sup
06=x∈Fn

||Ax||β
||x||α

.

Show that || · ||α,β satisfies all the properties of a norm.Exercise 113

Show thatExercise 114

||Ax||β ≤ ||A||α,β||x||α.

For A ∈ Fm×n we define the p-norm of A to be 64Induced ma-
trix p-norms

||A||p = sup
06=x∈Fn

||Ax||p
||x||p

, 1 ≤ p ≤ ∞.

For x ∈ Fm×1 show that the vector p-norm and matrix p-norm give identical values.Exercise 115

Show that for A ∈ Fm×nExercise 116

||A||1 = max
1≤j≤n

m∑
i=1

|Ai,j |.

Show that for A ∈ Fm×nExercise 117

||A||∞ = max
1≤i≤m

n∑
j=1

|Ai,j |.
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Sub-multiplicative property: show thatExercise 118

||AB||p ≤ ||A||p||B||p.

Establish the following inequalities for A ∈ Fm×nExercise 119

||A||1 ≤ m||A||∞
||A||∞ ≤ n||A||1
||A||1 ≤

√
m||A||2

||A||2 ≤
√

n||A||1.

Hint: The corresponding inequalities for vector norms might prove useful.

Show that for A ∈ Fm×nExercise 120

||A||2 = sup
06=y∈Fm

06=x∈Fn

∣∣yHAx
∣∣

||y||2||x||2
.

Show that ||A||2 = ||AH ||2.Exercise 121

Show that ||AB||F ≤ min{||A||2||B||F , ||A||F ||B||2}.Exercise 122

Show that ||A||2 ≤ ||A||F .Exercise 123

Show that the Frobenius norm is sub-multiplicative.Exercise 124

Show that for A ∈ Fm×nExercise 125

||A||p = sup
06=y∈Fm

06=x∈Fn

∣∣yHAx
∣∣

||y||q||x||p
,

1

p
+

1

q
= 1.

Show that ||A||p = ||AH ||q when pq = p + q.Exercise 126

An important, but little known result, is one of Holmgren’s,

||A||22 ≤ ||A||1||A||∞.

Show that for c > 0,Exercise 127

xy ≤ c
x2

2
+

1

c

y2

2
,

and that the lower bound is achieved for some c ≥ 0 when x, y ≥ 0.
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Since, for x ∈ Fn and y ∈ Fm,∣∣∣ y HAx
∣∣∣ ≤ m∑

i=1

n∑
j=1

|Ai,j | |yi| |xj | ≤
m∑
i=1

n∑
j=1

|Ai,j |
(

c
|yi|2

2
+

1

c

|xj |2

2

)
,

whence ∣∣∣ y HAx
∣∣∣ ≤ c

2
||A||∞||y||22 +

1

2c
||A||1||x||22.

Therefore, using the achievability of the lower-bound of exercise 127, we can con-
clude that ∣∣ y HAx

∣∣
||x||2||y||2

≤
√
||A||1||A||∞,

from which Holmgren’s result follows.

Why?Exercise 128
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3.6 Riesz–Thorin
Holmgren’s result is a special case of a result of M. Riesz. Due to an elegant proof of
Thorin it is called the Riesz–Thorin interpolation theorem. We present a specialized
version of the result.

65Riesz-Thorin
interpola-

tion theorem ||A||p(a) ≤ ||A||1−ap0 ||A||ap1 ,
1

p(a)
=

1− a

p0
+

a

p1
, 0 ≤ a ≤ 1.

We give a brief and dirty review of the needed complex analysis. For the net few
exercises engineering proofs are good enough, as a lot more work is needed to enable
rigorous proofs.

A formal series of the form 66Taylor series
∞∑
n=0

an(z − a)n

is called a Taylor series about the point a ∈ C.

The radious of convergence of a Taylor series
∑∞

n=0 an(z − a)n, is a number R, 67Radius of
Convergence possibly infinite, such that

∞∑
n=0

|an| |z − a|n < ∞

whenever |z − a| < R.

Let Ω denote an open set in C. We assume that the boundary of Ω is a piece-wise
smooth curve that is simply connected.

A function f is said to be analytic in Ω, if at every point a ∈ Ω it has a Taylor series 68Analytic
representation, f(z) =

∑∞
n=0 an(z − a)n, with a non-zero radius of convergence.

Let 69ez

ez =
∞∑
n=0

zn

n!
.

Show that ez is analytic in C.Exercise 129

Let Γ denote the circle |z − a| = R, such that Γ ⊂ Ω. Let f be analytic in Ω. ShowExercise 130
that
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∫
Γ

f(z)dz = 0.

Hint: Take z − a = Reiθ and dz = Rieiθdθ and write it as an ordinary integral over
0 ≤ θ ≤ 2π.

Show thatExercise 131

f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz.

This is called Cauchy’s integral formula. Hint: Use a Taylor series expansion for f
integrate term-by-term.

Show thatExercise 132

|f(a)| ≤ max
|z−a|=R

|f(z)|.

Show that f(z) must attain its maximum (and minimum) at the boundary of Ω.Exercise 133
This is called the maximum principle.

This is the end of the review, as all we needed was the maximum principle. You
should be able to give complete proofs from now on.

For the rest of this section let Ω be the strip 0 ≤ Rez ≤ 1.

Show that |eλz|, with real λ, must achieve its maximum and minimum in Ω (inde-Exercise 134
pendently) on one of the lines Re(z) = 0 or Re(z) = 1. This does not require the
maximum principle.

Show that |
∑N

k=1 zke
λkz| with real λk achieves its maximum on one of the linesExercise 135

Re(z) = 0 or Re(z) = 1.

Let f(z) be analytic in an open set containing Ω. Let 70Hadamard’s
three lines lemma

F (a) = sup
y
|f(a + iy)| , 0 ≤ a ≤ 1.

Then

F (a) ≤ F 1−a(0)F a(1).

Proof of three lines lemma. Let

φ(z) = f(z)e
z log

F (0)
F (1) .
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Clearly φ is analytic in an open set containing Ω. By the maximum principle |φ(z)| ≤
F (0) on Ω. Therefore

|f(a + iy)| ea log
F (0)
F (1) ≤ F (0),

and from this the three lines lemma follows.

Why? ¤Exercise 136

We note that

||A||p = sup
x,y6=0

∣∣yHAx
∣∣

||y||q||x||p
,

1

p
+

1

q
= 1.

Let
1

p(z)
=

1− z

p0
+

z

p1
,

and
1

p(z)
+

1

q(z)
= 1.

Observe that
1

q(z)
=

1− z

q(0)
+

z

q(1)
.

Prove it.Exercise 137

Let ||x||p(a) = ||y||q(a) = 1. Let xk = |xk|eiψk and yk = |yk|eiθk . Define

xk(z) = |xk|
p(a)
p(z) eiψk and yk(z) = |yk|

q(a)
q(z) eiθk .

Define

f(z) = yH(z) A x(z).

Note that 1/p(z) and 1/q(z) are linear functions in z, and hence analytic in z.
Therefore x(z) and y(z), and hence f(z), are also analytic functions of z.

Prove it.Exercise 138

As before let F (a) = sup
y
|f(a + iy)|. Then it is true that

F (0) ≤ ||A||p0 and F (1) ≤ ||A||p1 . (3.2)
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To prove these we first observe that

Re
(

1

p(x + iy)

)
=

1− x

p0
+

x

p1
=

1

p(x)
.

Prove it.Exercise 139

Hence it also follows that

Re
(

1

q(x + iy)

)
=

1

q(x)
.

Therefore we can conclude that ||x(α + iβ)||p(α) = ||x(α)||p(α). Similarly ||y(α +
iβ)||q(α) = ||y(α)||q(α).

Prove it.Exercise 140

Next we note that ||x(0)||p0p0 = ||x(a)||p(a)
p(a)

= 1 = ||x(1)||p1p1 . Similarly ||y(0)||q(0)
q(0)

=

||y(a)||q(a)
q(a)

= 1 = ||y(1)||q(1)
q(1)

.

Prove it.Exercise 141

From this it follows, using Hölder’s inequality, that

F (0) = sup
β
|f(iβ)| ≤ sup

β
||y(iβ)||q(0)||A||p0||x(iβ)||p0 = ||A||p0 .

Similarly we can establish that

F (1) ≤ ||A||p1 .

Now choose x and y such that f(a) = ||A||p(a), in addition to the fact that that
||x||p(a) = ||y||q(a) = 1. Then it follows that

F (a) = sup
b
|f(a + ib)| ≤ ||A||p(a) = |f(a)| ≤ F (a).

Now apply the three lines lemma to obtain the Riesz–Thorin theorem.

Do so.Exercise 142

For finite–dimensional matrices Holmgren’s result is more than sufficient in practice.
The Riesz–Thorin result exhibits its power in the infinite–dimensional case, where
one or both of the 1–norm and the ∞–norm may be infinite.
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3.7 Perturbed inverses

We will now show that A−1 is a continuous functions of its entries. There are
several ways to establish this fact. We will take a route via Neumann’s theorem
that is useful in its own right.

Let An for n = 1, 2, . . ., denote a sequence of m×n matrices. We say that lim
n→∞

An = 71Convergence of
matrix sequences A, if every component of An converges to the corresponding component of A. In

other words convergence of a matrix sequence is defined component-wise.

Show that lim
n→∞

An = A iff lim
n→∞

||An − A|| = 0, for any valid matrix norm. NoteExercise 143
that this not true for matrices of infinite size.

We say that
∑∞

n=1 An = A if lim
n→∞

Sn = A, with SN =
∑N

n=1 An. 72Convergence
of matrix sums

Just like infinite sums of numbers, convergence of infinite matrix sums can be deli-
cate.

Riemann’s theorem. Show that by re-ordering the sum
∑∞

n=1(−1)n/n you canExercise 144
make it converge to any real number.

This cannot happen if the series converges absolutely. Geometrically if you think of
the series as a string with marks on it corresponding to the individual terms, bad
things can happen only if the string has infinite length.

We say that
∑∞

n=1 An converges absolutely if
∑∞

n=1 ||A||n < ∞, for some matrix 73Absolute
convergence norm.

Show that if
∑∞

n=1 ||A||n < ∞ then there exists a finite matrix A such
∑∞

n=1 An =Exercise 145
A.

Let A be a square matrix such that ||A|| < 1 for some induced matrix norm. It then 74Neumann’s
Theorem follows that

(I−A)−1 =
∞∑
n=0

An,

with absolute convergence of the series on the right.

Proof. This is just the matrix version of the geometric series.

Show that for |z| < 1, (1− z)−1 =
∑∞

n=0 zn, with the series converging absolutely.Exercise 146

Show that
∑∞

n=1 An converges absolutely since ||An|| < 1.Exercise 147
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The only question is whether it converges to (I−A)−1? First we prove the required
inverse exists. Suppose it does not. Then there exists a vector x with ||x|| = 1 such
that Ax = x. (Why?)

Show that this implies that ||A|| ≥ 1, which is a contradiction.Exercise 148

It follows that I−A is invertible.

Suppose
∑∞

n=1 An and
∑∞

n=1 Bn are two absolutely converging matrix series. ShowExercise 149
that

•
∑∞

n=1 An +
∑∞

n=1 Bn =
∑∞

n=1(An + Bn)

• C
∑∞

n=1 An =
∑∞

n=1 CAn

Show that (I−A)
∑∞

n=0 An = I. ¤Exercise 150

Show that if A =
∑∞

n=1 An then ||A|| ≤
∑∞

n=1 ||An||.Exercise 151

Show that if ||A|| < 1 for some induced matrix norm then ||(I−A)−1|| ≤ (1−||A||)−1.Exercise 152

Let ||A−1||||E|| < 1 for some induced matrix norm. Show that A + E is non-singularExercise 153
and that

||(A + E)−1 −A−1||
||A−1||

≤ ||A||||A−1|| ||E||
||A||

1

1− ||A−1||||E||
.

The factor κ(A) = ||A||||A−1|| is called the condition number of the matrix A and
it is the amplification factor for the norm-wise relative error in A−1 due to relative
norm-wise perturbations in A. In general, linear systems with large condition num-
bers are difficult to solve accurately on floating-point machines. It is something that
one should always be aware of.
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4 Orthogonality
The fact that the vector 2-norms are related to matrix multiplication leads to a
powerful algebraic technique.

4.1 Unitary Matrices
A set of column vectors vi is said to be orthonormal if ||vi||2 = 1 and vHi vj = 0 for 75Orthonormal
i 6= j.

A square matrix U is said to be unitary if UHU = I. 76Unitary Matrix

A real unitary matrix is called an orthogonal matrix. 77Orthogo-
nal Matrix

Show that if the matrix U is unitary then UUH = I.Exercise 154

Show that the rows of a unitary matrix form an orthonormal set.Exercise 155

Show that the columns of a unitary matrix form an orthonormal set.Exercise 156

Show that the product of two unitary matrices is unitary.Exercise 157

Let U be a n × n unitary matrix. Show that for x, y ∈ Rn, yHx = (Uy)H(Ux).Exercise 158
Therefore unitary transforms preserve inner products. Conclude that unitary trans-
forms preserve 2-norms and angles of column vectors.

Show that ||UAV||F = ||A||F , if U and V are unitary transforms.Exercise 159

Show that ||UAV||2 = ||A||2, if U and V are unitary transforms.Exercise 160

Show that permutation matrices are orthogonal matrices.Exercise 161

A matrix of the form I − 2vvH

vHv is called a Householder transform, where v is a 78Householder
Transform non-zero column vector.

Show that a Householder transform is a Hermitian unitary matrix.Exercise 162

Consider the Householder transform H = I − 2vvH

vHv . Show that Hv = −v. ShowExercise 163
that if xHv = 0, then Hx = x.

Explain why the Householder transform is called an elementary reflector.Exercise 164

Let x, y ∈ Rn. Show, by construction, that there is a Householder transform HExercise 165
such that Hx = y, if ||x||2 = ||y||2.

Elementary Gauss and Householder transforms are the main ingredients for the
algorithmic construction of matrix decompositions.
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4.2 The Singular Value Decomposition

Or, the SVD, is the sledge-hammer that solves all problems in matrix analysis (or
something like that).

Show that for A ∈ Cm×nExercise 166

||A||2 = sup
||x||2=||y ||2=1

|yHAx|.

Since the unit spheres for the 2-norm in Cn and Cm are compact, and matrixExercise 167
products are continuous functions, show that there exists x ∈ Cn and y ∈ Cm such
that ||x||2 = ||y||2 = 1, and Ax = ||A||2y.

For every m × n matrix A there exist unitary matrices U and V and a matrix 79SVD
Σ ∈ Rm×n of the form

Σ =

σ1 0 · · ·
0 σ2

. . .
... . . . . . .

 ,

with σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0, such that A = UΣVH .

Proof. Let ||x||2 = 1 = ||y||2 such that Ax = ||A||2y. Let H1 and H2 be two
Householder transforms such that H1x = e1 and H2y = e1, where ei denotes
column i of the appropriate identity matrix. Now we claim that

H2AHH
1 =

(
||A||2 bH

0 C

)
.

Prove it.Exercise 168

Next we note that b = 0. To prove this first note that ||H2AHH
1 ||2 = ||A||2 since H1

and H2 are unitary.

Show thatExercise 169 ∣∣∣∣∣∣∣∣( ||A||2 bH
0 C

)(
||A||2

b

)∣∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣( ||A||2b

)∣∣∣∣∣∣∣∣
2

≥
√
||A||22 + ||b||22.

But this would imply that ||H2AHH
1 ||2 > ||A||2 unless b = 0. Hence we have that
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H2AHH
1 =

(
||A||2 0

0 C

)
.

Clearly we can take ||A||2 = σ1 in the proof. To finish we can proceed by induction.
Assuming that we have SVD’s for all matrices of size (m− 1)× (n− 1) and smaller,
let C = U1Σ1VH

1 be the SVD of C. Then it is clear that

A = H2
H

(
1 0
0 U1

)
︸ ︷︷ ︸

U

(
||A||2 0

0 Σ1

)
︸ ︷︷ ︸

Σ

(
1 0
0 V1

)H
H1︸ ︷︷ ︸

VH

.

Check that U and V in the above formula are unitary and that Σ has the desiredExercise 170
diagonal structure with real non-negative entries on the main diagonal.

For the base case of the induction it is sufficient to write down the SVD of an empty
(either rows or columns) matrix

A = I 0 IH .

Check that this base case is sufficent.Exercise 171

The only thing left to check is that the diagonal entries in Σ are in decreasing order.
The easy way out is to say that if they are not in decreasing order then we can
apply two permutation matrices from the left and right to correct the order and
note that permutations are unitary. But it is more informative to note instead that
||C||2 ≤ ||A||2.

This follows from the following more general fact.

Show thatExercise 172 ∣∣∣∣∣∣∣∣(A 0
0 B

)∣∣∣∣∣∣∣∣
p

= max (||A||p, ||B||p) ,

for 1 ≤ p ≤ ∞. ¤

The columns of U are called the left singular vectors of A, while the columns of
V are called the right singular vectors. The σi are called the singular values
of A.

LetExercise 173

A =

 a11 0 · · ·
0 a22

. . .
... . . . . . .


m×n

.
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Show that ||A||p = max
1≤i≤min(m,n)

|aii| for 1 ≤ p ≤ ∞.

Show that ||A||2 = σ1 and ||A||2F = σ2
1 + · · · + σ2

min(m,n), where σi are the singularExercise 174
values of A.
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4.3 Orthogonal Subspaces

Two subspaces U and W of Fn are said to be orthogonal to each other if every vector 80Orthogonal
subspaces in U is orthogonal to every vector in W . This is denoted by U ⊥ W .

Show that U ∩W = {0} if U ⊥ W .Exercise 175

The orthogonal complement of the set U is the set of all vectors that are orthogonal 81Orthogonal
Complement to all vectors in U . It is denoted as U⊥.

Show that U ⊥ U⊥.Exercise 176

Let U = ( U1 U2 ) be an n× n unitary matrix. Show thatExercise 177

• The columns of U1 form an orthonormal basis for R(U1)

• R(U1) = R(U2)
⊥

• (R(U1)
⊥)⊥ = R(U1)

• R(U1)⊕R(U1)⊥ = Cn

Let the SVD of A be partitioned as follows

A = UΣVH = ( U1 U2 )

(
Σ1 0
0 0

)
( V1 V2 )H ,

where Σ1 ∈ Rr×r is a non-singular diagonal matrix. That is, σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Show that A = U1Σ1VH
1 .Exercise 178

This is sometimes called the economy SVD of A.

Show that U1 and V1 are full column-rank matrices (rank r).Exercise 179

The SVD gives a full description of the geometry of the four fundamental subspaces
associated with the matrix A.

Show thatExercise 180

• AV1 = U1Σ1

• AV2 = 0

• UH
1 A = Σ1VH

1
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• UH
2 A = 0

• R(A) = R(U1)

• R(AH) = R(V1)

• R(V2) = N (A)

• R(U2) = N (AH)

• R(AH) = N (A)⊥

• R(A)⊥ = N (AH)

• rank(A) = r, the number of non-zero singular values of A

Let U denote a subspace of Cn. Construct an orthonormal basis for U from one ofExercise 181
its basis using the SVD.

Let U be a subspace of Cn. Show thatExercise 182

• U⊥⊥ = U

• U ⊕ U⊥ = Cn

The orthogonal projector onto the subspace U is defined to be a linear operator 82Orthogonal
Projector PU with the following properties

• N (PU ) = U⊥

• PUu = u for all u ∈ U

Show that orthogonal projectors are idempotent: P 2
U = PU .Exercise 183

Show that PU is unique for a given U .Exercise 184

Let U = ( U1 U2 ) be a unitary matrix. Show that U1UH
1 = PR(U1).Exercise 185

Show that orthogonal projectors are Hermitian.Exercise 186

Construct an idempotent matrix that is not an orthogonal projector. These areExercise 187
called oblique projectors.

Let P be a Hermitian idempotent matrix. Show that P = PR(P).Exercise 188

Let U be a subspace of Cn. Show that every x ∈ Cn has a unique decomposition ofExercise 189
the form x = u + w where u ∈ U and w ∈ U⊥. Hint: u = PUx.

Show thatExercise 190

min
u∈U

||x− u||2 = ||x− PUx||2.
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4.4 Minimum norm least-squares solution

The LU factorization solved completely the question of finding all solutions of the
system of equations Ax = b, where x is unknown. However there is something
unsatisfactory in that solution. Generically, skinny systems will almost surely have
no solutions, while fat systems will almost surely have infinitely many solutions.
Since both these cases are frequent in engineering a more informative approach is
necessary.

Let xLS be such thatExercise 191

min
y
||Ay− b||2 = ||AxLS − b||2.

Show that AxLS = PR(A)b, and hence unique. Give an example where xLS is not
unique.

Let

XLS = {x : min
y∈Rn

||Ay− b||2 = ||Ax− b||2}.

A subset X of a vector space V is said to be affine linear if there exists a vector 83Affine Linear
v ∈ V such that the set {x− v : x ∈ X} is a subspace.

Show that XLS is a affine linear set.Exercise 192

Show that there is a unique solution toExercise 193

min
u∈X

||x− u||2,

where X is an affine linear set. Hint: Exercise 190.

Let 84Minimum
Norm Least

Squares solution xMNLS = argminx∈XLS||x||2.

Then xMNLS is called the minimum norm least squares solution of the system of
equations Ax = b.

Let A = UrΣrVH
r denote the economy SVD of A. Then

xMNLS = VrΣ
−1
r UH

r b.

Prove it.Exercise 194

Let 85Pseudo-inverse
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Σ =

(
Σr 0
0 0

)
with Σr a non-singular diagonal matrix. Then we define the pseudo-inverse of Σ
(denoted by superscript †) as

Σ† =

(
Σ−1
r 0
0 0

)
.

More generally, if A = UΣVH is the SVD of A we then define A† = VΣ†UH .

The above definition may be ambiguous since the SVD of A is not unique.

Show that A† = VrΣ
−1
r UH

r , using the economy SVD of A.Exercise 195

Therefore xMNLS = A†b. This can be used to define the pseudoinverse uniquely.

Show thatExercise 196

• AA† = PR(A)

• A†A = PR(AH)

• AA†A = A

• A†AA† = A†

Roger Penrose showed that the pseudo-inverse is the unique solution to these four
equations. However, we will take a different path.

A map A : V → W , between two vector spaces V and W over the field F is said to 86Linear Map
be linear if A(αx + βy) = αA(x) + βA(y) for all α, β ∈ F and all x, y ∈ V .

Let A : V → W be a linear map between two vector spaces. Let v1, · · · , vn be a 87Matrix Rep-
resentation basis for V . Let w1, · · · , wm be a basis for W . Define the mn unique numbers Aij

by the equation A(vj) =
∑m

j=1 wiAij . Then we call A the matrix representation of
A for the given bases.

Why is A unique?Exercise 197

Suppose x ∈ V , and b ∈ W , have the representations x =
∑n

j=1 xjvj and b =Exercise 198 ∑m
i=1 biwi, and A(x) = b. Then show that Ax = b.

Let U , V and W be vector spaces over the field F. Let A : U → V and B : V → WExercise 199
be two linear maps. Show that B ◦ A : U → W is a linear map.
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If fixed bases are used for U , V andW , then show that BA is a matrix representationExercise 200
for B ◦ A.

Show that A ∈ Cm×n is a one-to-one onto linear map from R(AH) to R(A). CallExercise 201
this map B : R(AH) → R(A).

Show that in the appropriate bases for R(AH) and R(A), Σr is a matrix represen-Exercise 202
tation of B.

Define the map C : Cn → Cm as follows: C(b) = B−1(PR(A)b). Show that A† is aExercise 203
matrix representation of C.

This shows that the pseudo-inverse is uniquely defined.

Why?Exercise 204
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4.5 Problems

The SVD usually costs about 10 times as much as an LU fcatorization. A good
substitute is the QR factorization.

Let A ∈ Cm×n with m ≥ n. Show that theres exists a unitary matrix Q such thatProblem 5

A = Q
(

R
0

)
,

where R is upper triangular with non-negative diagonal entries. Hint: This is similar
to the construction of the SVD, but simpler.

Let A be a full column-rank matrix. Show thatProblem 6

A† = (AHA)−1AH = ( R−1 0 ) QH

Let A ∈ Cm×n with n ≥ m. Show that theres exists a unitary matrix Q such thatProblem 7

A = ( L 0 ) Q,

where L is lower triangular with non-negative diagonal entries

Let A be a full row-rank matrix. Show thatProblem 8

A† = AH(AAH)−1 = QH

(
L−1

0

)
Find the shortest distance between two infinite straight lines in Rn.Problem 9

Show that ||A||F ≤
√

rank(A)||A||2.Problem 10



49

5 Spectral Theory

In principle we have covered everything for solving systems of linear equations.
However, our techniques (meaning LU factorization) do not generalize (yet?) to
infinite-number of equations. A host of different techniques have been developed for
handling this case. Spectral methods are among the most powerful of these.

Examples of infinite number of equations include differential and difference equa-
tions, and it was in their analysis that spectral theory was first born.

5.1 Spectral Decompositions

In this section, unless mentioned otherwise, all matrices will be assumed to be square.

Show that dim(Cn×n) = n2.Exercise 205

We will assume that A0 = I and that Ak+1 = AAk for k ≥ 1. If A is invertible we
will define A−k = (A−1)k for k ≥ 0.

Let p(x) =
∑N

n=0 anx
n. Define p(A) =

∑N
n=0 anAn. 88Polynomial

of a matrix
For this definition to be useful, we need to ensure that different ways of defining the
same polynomial yield the same value when evaluated at a matrix. For example, if
q and r are polynomials, we would like that q(A)r(A) = r(A)q(A) = (qr)(A) for
all square matrices A.

Prove that it is so.Exercise 206

For every square matrix A there is a complex number λ such that A−λI is singular.Lemma 1

Proof.

For a given A ∈ Cn×n, show that there exist n2 + 1 complex numbers αi, forExercise 207
0 ≤ i ≤ n2, not all zero, such that

n2∑
i=0

αiAi = 0.

Let p(x) =
∑n2

i=0 αix
i be the corresponding polynomial. Let M ≥ 1 be its degree.

(Why not 0?). It is well known that p can be factored as
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p(x) =
M∏
i=0

(x− µi),

for M complex numbers µi (possibly indistinct). It follows that

p(A) =
M∏
i=0

(A− µiI) = 0.

Make sure you understand why exactly this is true.Exercise 208

Since the product of two square non-singular matrices is non-singular (why?) it
follows that there exists some i for which A− µiI is singular. ¤

For every square matrix A there exists a unitary matrix Q and an upper-triangular 89Schur de-
composition matrix R such that A = QRQH .

This is the computationally stable factorization in spectral theory, and hence of
great practical significance.

Proof. The proof is by induction. For 1 × 1 matrices the theorem is obviously
true: A = IAIH . Assume it is true for all matrices of size (n − 1) × (n − 1) or
smaller. Let A ∈ Cn×n. Let λ be a complex number such that A − λI is singular.
Let v ∈ N (A − λI) be of unit length: ||v||2 = 1. Choose a Householder transform
H such that Hv = e1 (where ei denotes column i of the identity matrix). Then it
is easy to see that

HAHH =

(
λ bH
0 C

)
.

Prove it.Exercise 209

By the inductive assumption C = Q1R1QH
1 , where Q1 is unitary and R1 is upper

triangular. It follows that

A = HH

(
1 0
0 Q1

)
︸ ︷︷ ︸

Q

(
λ bHQ1

0 R1

)
︸ ︷︷ ︸

R

(
1 0
0 Q1

)H
HH︸ ︷︷ ︸

QH

,

Prove it. ¤Exercise 210

In general the diagonal entries of R are arbitrary complex numbers. However, we
can impose some order on them that is of significance.

Suppose A = VBV−1. Show that trace(A) = trace(B).Exercise 211
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LetLemma 2

R =

(
λ1 α
0 λ2

)
.

There exists a unitary matrix Q such that

QRQH =

(
λ2 β
0 λ1

)
.

Proof. There is nothing to prove if λ1 = λ2. So we consider the case λ1 6= λ2.
Choose v such that Rv = λ2v and ||v||2 = 1.

Find v explicitly.Exercise 212

Choose a Householder transform H such that Hv = e1.

Find H explicitly.Exercise 213

Then we can choose Q = H.

Prove it. ¤Exercise 214

A strictly upper triangular matrix is an upper triangular matrix with zero entries 90Strictly up-
per triangular on the diagonal.

For every square matrix A there is an unitary matrix Q such that A = QRQHLemma 3
with

R =


R11 R12 · · · R1M

0 R22
. . . ...

... . . . . . . RM−1,M

0 · · · 0 RMM

 ,

where Rii = λiI+R̃ii with R̃ii being a strictly upper triangular matrix, and λi 6= λj
for i 6= j.

Proof. The proof follows from a simple observation. Suppose two adjacent diagonal
entries in the matrix R from the Schur decomposition are distinct
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R =



∗ ∗ · · · · · · · · · · · · · · · ∗
0

. . . . . . ...... . . . ∗ ∗ ...... . . . λ1 α
...

... . . . λ2 ∗ ...

... . . . ∗ . . . ...... . . . . . . ∗
0 · · · · · · · · · · · · · · · 0 ∗


.

Then we can find a unitary transform H such that

HHRH =



∗ ∗ · · · · · · · · · · · · · · · ∗
0

. . . . . . ...... . . . ∗ ∗ ...... . . . λ2 β
...

... . . . λ1 ∗ ...

... . . . ∗ . . . ...... . . . . . . ∗
0 · · · · · · · · · · · · · · · 0 ∗


,

where ∗ denotes elements that are not pertinent to the argument.

Prove this using Lemma 2.Exercise 215

The rest of the proof follows now by using this observation repeatedly in a bubble-
sort like operation to move the diagonal entries of R into the right positions.

Provide the details. ¤Exercise 216

This extended version of the Schur decomposition is usually refined even further to
facilitate theoretical arguments. In particular we would like to make R as diagonal
as possible. Unfortunately, just using a single unitary transformation, the Schur
decomposition is the best we can do.

LetLemma 4

R =

(
R1 B
0 R2

)
,

where Ri = λiI + strictly upper triangular matrix, and λ1 6= λ2. Then there exists
a non-singular matrix V such that
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R = V
(

R1 0
0 R2

)
V−1.

Proof.

Show that there exists a unique solution X, to the system of equationsExercise 217

R1X−XR2 + B = 0.

Show that there exists a unique solution X to the equationExercise 218 (
I −X
0 I

)(
R1 B
0 R2

)(
I X
0 I

)
=

(
R1 0
0 R2

)
.

Finish the proof of the lemma. ¤Exercise 219

We will use the following notation for block diagonal matrices 91Block diagonal

diag{Ri}ni=1 =


R1 0 · · · 0
0 R2

. . . ...
... . . . . . . 0
0 · · · 0 Rn

 .

For every square matrix A there exists a non-singular matrix V such thatLemma 5

V−1AV = diag{Ri}Mi=1,

where Ri = λiI + R̃i, R̃i are strictly upper triangular matrices, and λi 6= λj for
i 6= j.

Proof. Use Lemma 4 repeatedly.

Fill in the details of the proof. ¤Exercise 220

The question is can we pick the non-singular matrix V in the above lemma so as
to make Ri a true diagonal matrix? The answer, unfortunately, is no. However,
we can come pretty close: we can make it a bi-diagonal matrix with only zeros and
ones on the super-diagonal.

A Jordan block is a matrix of the form λIn + Zn, where Zn is the n × n shift up 92Jordan block
matrix

Zn =


0 1 0 · · · 0... . . . . . . . . . ...... . . . . . . 0... . . . 1
0 · · · · · · · · · 0


n×n

.



54

A matrix A is said to be nilpotent is there is a finite integer k for which Ak = 0. 93Nilpotent

Show that Znn = 0, and hence nilpotent.Exercise 221

Let R be a nilpotent matrix. Then there exists a non-singular matrix V such that 94Jordan de-
composition

R = V
(

diag{Zni}
M
i=1

)
V−1.

Proof. Let p be the smallest integer such that Rp = 0. If p = 0 we are done.
(Why?) So assume p > 1. Clearly there exists a w such that Rp−1w 6= 0. Form the
right Jordan chain

w, Rw, R2w, · · · , Rp−1w,

and stick them into the matrix

W = ( Rp−1w Rp−2w · · · Rw w ) .

Show thatExercise 222

RW = WZp. (5.1)

We claim that W has full column-rank. To see this consider Wx = 0.

Multiplying this equation by Rp−1 we get Rp−1Wx = 0. From this equation inferExercise 223
that xp = 0.

Next multiply by Rp−2 to obtain Rp−2Wx = 0 and infer that xp−1 = 0.Exercise 224

Proceed to establish that x = 0 and hence that W has full column-rank.Exercise 225

Next we construct the matching left Jordan chain. To do so we first find a vector
y such that

yHW = eH1 ,

where ei is column i of the identity matrix.

Why is this possible?Exercise 226

Now form the left Jordan chain

yH , yHR, · · · yHRp−1,

and stick them into the matrix
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YH =


yH

yHR
...

yHRp−1

 .

Show thatExercise 227

YHW = I.

This also establishes that Y has full column-rank.

Why? Another way is to imitate the corresponding proof for W.Exercise 228

Show thatExercise 229

YHR = ZpYH . (5.2)

Next we find a non-singular matrix G such that

G−1W =

(
I
0

)
and GHY =

(
I
0

)
.

There are many ways to construct G. We do it in two stages.

Use the SVD of W to find a non-singular matrix F such thatExercise 230

F−1W =

(
I
0

)
.

Hint: Make a small modification to the construction of W† (which is not invertible).

Since YHFF−1W = I, it follows that

YHF = ( I YH
2 ) .

Prove it.Exercise 231

Now observe that block Gaussian elimination

( I YH
2 )

(
I −YH

2
0 I

)(
I YH

2
0 I

)(
I
0

)
= I,

provides the necessary correction and we obtain

G = F
(

I −YH
2

0 I

)
.

Verify that this G does indeed satisfy all the desired properties.Exercise 232
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Using this G we convert Equations 5.1 and 5.2 into(
G−1RG

)( I
0

)
=

(
Zp
0

)
( I 0 )

(
G−1RG

)
= ( Zp 0 ) .

Verify these formulas.Exercise 233

From this we can verify that G−1RG is a 2 × 2 block diagonal matrix, with the
(1, 1)-block being Zp. Now we can proceed by induction to handle the 2× 2 block.

Complete the proof. ¤Exercise 234

To summarize the final Jordan decomposition theorem says that for every square
matrix A there exists a non-singular matrix V such that V−1AV is a block diagonal
matrix where each block is of the form

λI + diag{Zni}
M
i=1,

where λ, ni and M can vary from block to block.
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5.2 Invariant subspaces

Jordan chains made a magical appearance in the proof. A good way to see how they
arise is to consider the uniqueness of the decomposition.

A complex number λ such that A− λI is singular is called an eigenvalue of A. 95Eigenvalue

A non-zero column vector v is said to be an eigenvector associated with the eigen- 96Eigenvector
value λ of the matrix A if Av = λv.

A subspace V is said to be an invariant subspace of the matrix A if for every v ∈ V 97Invariant
subspace we have Av ∈ V .

A matrix A is said to be similar to a matrix B if there exists a non-singular matrix 98Similarity
transformation V such that A = VBV−1. We also say that A and B are related by a similarity

transformation.

Show that if λ is an eigenvalue of A then it is also an eigenvalue of VAV−1.Exercise 235

Show that λ is an eigenvalue of the upper triangular matrix R iff λ is one of theExercise 236
diagonal entries of R.

The eigenvalues of a matrix A are exactly the numbers that arise on the diagonalLemma 6
of the upper-triangular matrix R in the Schur decomposition of A.

Show that the trace of two similar matrices are equal.Exercise 237

Consider the matrixExample 4

R =

 1 3 4
0 1 5
0 0 2

 .

It is clear that the eigenvalues can only be the numbers 1 and 2.

But is the above matrix similar to

S =

 1 3 4
0 2 5
0 0 2

?

Show that the two matrices defined above, R and S, are not similar to each other.Exercise 238

This raises the question of uniqueness of the eigenvalues. It is clear that the distinct
numbers that comprise the eigenvalues of a matrix are unique. (Why?) But, what is
not clear is if their multiplicities as they occur on the diagonal of the upper-triangular
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matrix in the Schur decomposition are unique. The above example seems to suggest
that they must be unique, and we will proceed to establish it. The idea is to show
that the multiplicity of an eigenvalue has a unique geometrical interpretation. We
will actually show much more. We will show that the number and size of the Jordan
blocks asscoiated with the unique eigenvalue λ are also unique.

For the rest of this section let A = VJV−1 denote a Jordan decomposition of the
matrix A. Furthermore let λi for i = 1, . . . , N , denote the distinct eigenvalues
of A. Note that the λi’s are unique by our previous arguments. It is clear that
dim(N (A− λiI)) = Mi;1 is a well-defined positive number.

Show that Mi;1 denotes the number of Jordan blocks of size greater than or equal toExercise 239
one with eigenvalue λi. Hint: J is upper triangular and J− λiI has some nilpotent
diagonal blocks, which are the only ones that matter in this calculation.

It follows that the number of Jordan blocks asscoiated with the eigenvalue λ is a
unique fixed number. Note, this does not imply (right now) that the multiplicity of
λ is unique.

Now define Mi;2 = dim(N (A−λiI)2). Again, Mi;2 is a well-defined unique positive
number.

Show that N (A− λiI) ⊆ N (A− λiI)2 and hence Mi;2 ≥ Mi;1.Exercise 240

Show that Mi;2−Mi;1 is the number of Jordan blocks associated with the eigenvalueExercise 241
λi that are of size greater than or equal to two. To do this compute a basis for
N (J − λiI) and a basis for N (J − λiI)2. Note that a basis for the latter subspace
can be obtained by extending the basis for for the former subspace with a few well-
chosen vectors that are associated with the null-vectors of Jordan blocks of size
greater than 1.

Conclude that the number of Jordan blocks of size 1 associated with the eigenvalueExercise 242
λi is exactly 2Mi;1 −Mi;2, which is a unique well-defined non-negative number.

We now rinse and repeat to show that the blocks of bigger sizes must also be unique.
Let Mi;3 = dim(N (A− λiI)3).

Show that Mi;3 −Mi;2 is the number of Jordan blocks of size greater than or equalExercise 243
to 3 that are associated with the eigenvalue λi.

Clearly we can keep this up and prove that the number and size of each Jordan
block is unique and well-defined for a given matrix.

Make sure that you understand clearly what is going on.Exercise 244
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This only leaves the question of the uniqueness of matrix V in the Jordan decom-
position. Unfortunately the matrix is not fully unique. For example, the position of
the Jordan blocks inside J is not unique, thereby implying that the nmatrix V itself
is not unique. However, the columns of V and the rows of V−1 describe (are bases
for) certain invariant subspaces of A, and these invariant subspaces are unique. The
previous proof illustrates this point and we say no more about it.
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5.3 Difference Equations
So what can we do with spectral decompositions that we could not do with the
SVD? We have already seen examples, like the Stein equation, which can be more
efficiently solved via spectral decompositions. However the classical examples are
infinite sets of equations where spectral decompositions (for now at least) are the
only way.

Let u[n] ∈ CN for n = 0, 1, 2, . . ., be a sequence of unknown column vectors that
satisfy the constraints

u[n + 1] = Au[n] + f [n], (5.3)

where A ∈ CN×N and f [n] ∈ CN and are both known quantities. The question is
to find all sequences u[n] that satisfy the above constraints.

Write the above set of equations in the form Fx = b.Exercise 245

Note that there are an infinite number of unknowns and equations. So, even though
the constraints are linear equations it is not easy to develop a procedure like Gaussian
elimination to find the solutions. Fortunately it turns out that a spectral decompo-
sition of A is sufficient.

The idea is to first figure out the nullspace of the associated matrix. Consider the
so-called homogenous equations

uh[n + 1] = Auh[n], n ≥ 0.

It is clear that the only solutions are of the form

uh[n] = Anuh[0].

From this we can guess that a solution of the equations is

up[n + 1] =
n∑
k=0

An−kf [k],

assuming up[0] = 0.

Verify that up does indeed satisfy the difference equation 5.3.Exercise 246

Therefore the general solution is

u[n] = Anu[0] + An−1f [0] + An−2f [1] + · · ·+ A0f [n− 1].

Verify this.Exercise 247
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This formula is a bit cumbersome to use. A simplification is available via the Jordan
decomposition A = VJV−1.

Show that An = VJnV−1.Exercise 248

Remember that J is block diagonal with each diagonal block of the form λI + Zp.
Therefore we only need to figure out a formula for (λI + Zp)n. (Why?)

Prove the binomial theoremExercise 249

(a + b)n =
n∑
k=0

(
n

k

)
akbn−k

for a, b ∈ C.

Show that if AB = BA thenExercise 250

(A + B)n =
n∑
k=0

(
n

k

)
AkBn−k.

Show that (λI + Zp)n is an upper triangular matrix withExercise 251
n!

(n− k)!k!
λn−k

as the entry in the k-th super-diagonal. So λn is the entry on the main diagonal,
for example.

Using the Jordan decomposition develop a simple formula for V−1u[n], the solutionExercise 252
of the difference equation in terms of V−1f .
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5.4 Matrix-valued functions

We now define differentiation and integration of matrix-valued functions. Let A :
C → Cm×n, denote a matrix-valued function of a single complex variable. This is
usually denoted as A(z). We define d

dzA(z) to be an m × n matrix whose (i, j)
entry is the derivative of the (i, j) entry of A(z). In other words we define differ-
entiation component-wise. Sometimes we will use a super-script prime to denote
differentiation: A′(z).

In a similar manner we define
∫
Γ A(z)dz to be an m × n matrix with the (i, j)

component being the corresponding integral of the (i, j) component of A(z). Note
that both differentiation and integration are defined here for matrices of arbitrary
size of a single (potentially complex) variable.

Show thatExercise 253
d

dt
(A(t) + B(t)) =

d

dt
A(t) +

d

dt
B(t),

d

dt
(A(t)B(t)) =

(
d

dt
A(t)

)
B(t) + A d

dt
B(t).

Show thatExercise 254

d

dt
A−1(t) = −A−1(t)

(
d

dt
A(t)

)
A−1(t).

Hint: AA−1 = I.

Show thatExercise 255 ∫
A B(t) C dt = A

∫
B(t) dt C,

when A and C are constant matrices.

A matrix-valued function A(t) is said to be continuous function of t if each com-
ponent Aij(t) is a continuous function of t. Suitable changes should be made for
“continuous at a point” and “continuous on a set”.

Let A(t) be a continuously differentiable matrix-valued function on [0, 1]. Show thatExercise 256 ∫ 1

0

d

dt
A(t) dt = A(1)−A(0).

Let A(t) be a continous matrix-valued function on the interval [0, 1]. Show thatExercise 257
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∣∣∣∣∣∣∣∣∫ 1

0
A(t) dt

∣∣∣∣∣∣∣∣ ≤ ∫ 1

0
||A(t)|| dt.

Hint: Use Riemann sums to approximate both sides and use the triangle inequality
satisfied by norms.
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5.5 Functions of matrices

While it is possible to give more examples of infinite sets of equations whose solution
is made accessible via spectral decompositions, we will take a more general point of
view in this section.

In Section 5.3 we saw the need to understand the internal structure of sums of
powers of matrices. In this section we place that in a larger context. Given an
analytic functions (like zn) how to evaluate that function at a given matrix A?

First we need some additional facts from complex analysis. See Section 3.6 for some
preliminary facts. Once more, for the next three exercises, engineering proofs are
good enough. Anything better requires substantially more machinery.

Extend Exercise 130 to show that if Γ ⊂ Ω is some simple (not self-intersecting)Exercise 258
smooth closed curve in the open set Ω in the complex plane, and f is analytic in Ω
then

∫
Γ f(z)dz = 0. Hint: Use the fact that f(z) = F ′(z) for some suitable analytic

function F . Can you suggest a candidate for F?

Extend Cauchy’s formula (Exercise 131) to the case where the contour of integrationExercise 259
Γ ⊂ Ω is not necessarily a circle, but just a simple smooth closed curve:

f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz.

Hint: Starting with the circle deform it to the desired curve in pieces using the
previous exercise.

Show thatExercise 260
dn

dan
f(a) =

n!

2πi

∫
Γ

f(z)

(z − a)n+1
dz.

Let A be a square matrix. Let f be an analytic function in the open set Ω. Let Γ 99f(A)
be a smooth closed curve in Ω. Suppose all the eigenvalues of A lie inside the open
set bounded by Γ. Then we define

f(A) =
1

2πi

∫
Γ

f(z)(zI−A)−1dz.

Implicit in this definition is that the integral is well-defined and that the choice of
the curve Γ is immaterial as long as it is simple, lies inside Ω and encloses in its
strict interior all the eigenvalues of A.

Let A = VJV−1 denote the Jordan decomposition of A. Show that
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V−1f(A)V =
1

2πi

∫
Γ

f(z)(zI− J)−1dz.

Therefore it is enough to verify these assertions when A is a simple Jordan block.
(Why?)

Let Jp(λ) = λI + Zp.

Show thatExercise 261

(zI− Jp(λ))−1 =


1

z−λ
1

(z−λ)2
1

(z−λ)3
· · ·

0
. . . . . . . . .

... . . . . . . . . .

 ,

which is an upper-triangular Toeplitz matrix.

Show thatExercise 262

1

2πi

∫
Γ

f(z)(zI− Jp(λ))−1dz =

 f(λ) f ′(λ)
1!

f ′′(λ)
2! · · ·

0
. . . . . . . . .

... . . . . . . . . .

 .

This clearly shows the independence of the definition of f(A) on the curve Γ.

The Cauchy integral formula has a certain advantage for defining functions of ma-
trices: it is global. However Taylor series work better sometimes.

Let f(z) =
∑∞

n=0 cn(z − c)n for |z − c| < R. Let all the eigenvalues of A lie inside
the circle Ω = |z − c| < R. Let Γ denote a simple closed curve inside Ω. Then for
any a inside the interior of Γ it is clear that

f(a) =
∞∑
n=0

cn(a− c)n =
1

2πi

∫
Γ

f(z)(z − a)−1dz.

This suggests that f(A) =
∑∞

n=0 cn(A− cI)n should be true.

Show that f(z) =
∑∞

n=0
f (n)(c)
n! (z− c)n, where f (n) denotes the n-th order derivativeExercise 263

of f .

Let A = VJV−1 denote the Jordan decompoition of A. Show that
∑∞

n=0 cn(A −Exercise 264
cI)n = V(

∑∞
n=0 cn(J− cI)n)V−1.

Therefore it is sufficient to check if the Talyor series can be used to evaluate f(A)
when all the eigenvalues of A lie inside the circle of convergence.
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Show thatExercise 265

∞∑
n=0

f (n)(c)

n!
(Jp(λ)− cI)n =

 f(λ) f ′(λ)
1!

f ′′(λ)
2! · · ·

0
. . . . . . . . .

... . . . . . . . . .

 .

This show that the Taylor series expansion can be used to evaluate f(A) but only
when the eigenvalues lie inside the circle of convergence.

Let f(z) =
√

z. Unfortunately
√

z is multi-valued and we must specify a branch toExample 5
use. Let z = reiθ denote the polar decomposition of the complex number z with
−π < θ ≤ π. Pick the branch for the square-root such that f(reiθ) =

√
reiθ/2;

that is, f(z) lies in the right-half plane. Note that f(z) is discontiuous across the
negative real line. Therefore the negative real line is called the branch cut for f(z).
Let

A =

(
1 0
0 −1

)
.

Note that the eigenvalues of A are 1 and −1. Clearly the eigenvalues of A do not
lie in an open set Ω in which f(z) is analytic. Therefore neither Cauchy’s formula
nor Taylor series expansions can be used to evaluate f(A) in this case. However, if
we just want to solve the equation B2 = A, then it is easy to write down several
solutions

B =

(
f1(1) 0

0 f2(−1)

)
,

where f1 and f2 can be two different branches of the square root function. This
corresponds to picking the branch cut in such a way as to avoid all the eigenvalues
of A and allowing them to lie in a single connected open region.

Entire functions, functions that are analytic in the entire complex plane, do not
suffer from this problem. Both Cauchy’s formula and Taylor series expansions will
always work. The most common examples of entire functions are the exponential,
sine and cosine.

Another exmaple of a multi-valued function is the logarithm. Again, depending on
the location of the eigenvalues either Taylor series (less often), or Cauchy’s integral
formula (more often), can be used. If both fail to be applicable then the branch cut
must be adjusted suitably.



67

5.6 Differential equations

Let u(t) be a vector-valued function of the real variable t. Our objective is to find
u(t) that satisfies the differential equation

d

dt
u(t) = Au(t) + b(t), t > 0, (5.4)

where A is a constant matrix and b(t) is a known vector-valued function.

First some auxiliary facts.

Suppose tA has all its eigenvalues inside Ω where f is analytic. Show thatExercise 266
d

dt
f(tA) = f ′(tA)A = Af ′(tA).

The proof is quite easy if you use a Taylor series expansion, but not general enough.
In general you have to use Cauchy’s formula and the fact that since the integral is
absolutely converging you can differentiate inside the integral.

We first look at the homogenous equation
d

dt
uh(t) = Auh(t), t > 0.

Verify that a solution is uh(t) = etAuh(0).Exercise 267

With a little effort one can establish that this is the only solution. One approach is
to use the Jordan decomposition to reduce the problem to a set of single variable
ODEs and appeal to the scalar theory. Here we take an approach via Picard iteration
that also generalizes to non-constant coefficient ODEs.

Let [0, T ] be the interval over which a solution to the ODE
d

dt
uu(t) = Auu(t), uu(0) = 0,

exists. If we can show that uu(t) = 0 then we would have established uniqueness.
(Why?). Since the derivative of uu exists, it must be continuous. Let ||uu(t)|| ≤ L <
∞ for t ∈ [0, T ].

Show thatExercise 268

uu(t) =

∫ t

0
Auu(s)ds.

Show thatExercise 269
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||uu(t)|| ≤ t||A||L.

Hint: See Exercise 257.

Repeat the above argument and show thatExercise 270

||uu(t)|| ≤
tn||A||n

n!
L, n ≥ 1.

Conclude that uu(t) = 0 for t ∈ [0, T ].Exercise 271

Now that we have uniqueness, we can look at the form of the homogenous solution
and guess that a particular solution of the differential equation is

up(t) =

∫ t

0
e(t−s)Ab(s)ds,

assuming that up(0) = 0.

Show that e(t+s)A = etAesA = esAetA. Since the exponential is an entire functionExercise 272
an easy proof is via a Taylor series expansion for the exponential function.

Show that e0 = I.Exercise 273

Show that e−A = (eA)−1.Exercise 274

Verify that up(t) is indeed a solution of equation 5.4.Exercise 275

Therefore the general solution to equation 5.4 is

u(t) =

∫ t

0
e(t−s)Ab(s)ds + etAu(0).
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5.7 Localization of eigenvalues

One of the most important questions is how does f(A) change when we perturb A.
We already considered this question when f(x) = x−1 in Section 3.7. An obvious
idea is to use the Jordan decomposition to help make this estimate. For example

||f(A)|| = ||f(VJV−1)|| ≤ ||V||||V−1||||f(J)||.

But this upper bound can be wildly inaccuarate if κ(V) = ||V||||V−1|| is very large.
However, better general-purpose estimates are hard to come by. So one approach is
to look for special classes of matrices for which κ(V) is small in a suitable norm.

Let κ2(V) = ||V||2||V−1||2 denote the 2-norm condition number of the matrix V.

Show that κ2(V) ≥ 1. Hint: Use the SVD.Exercise 276

Show that if V is a unitary matrix then κ2(V) = 1.Exercise 277

A matrix A is said to be normal if AAH = AHA. 100Normal matrix

Show that unitary and orthogonal matrices are normal.Exercise 278

A matrix A is said to be 101Symmetry

• symmetric if AT = A

• skew-symmetric if AT = −A

• Hermitian if AH = A

• skew-Hermitian if AH = −A

Show that Hermitian and skew-Hermitian matrices are normal.Exercise 279

Show that every matrix can be written uniquely as the sum of a Hermitian and aExercise 280
skew-Hermitian matrix. Hint:

A =
A + AH

2
+

A−AH

2
.

Let A be normal. Then there exists a unitary matrix Q and a diagonal matrix ΛTheorem 2
such that A = QΛQH .

In other words for normal matrices the Schur decomposition is also the Jordan
decomposition with each Jordan block being of size one. Furthermore there is a full
set of orthonormal eigenvectors.
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Proof. The proof follows from the following fact.

If R is an upper triangular normal matrix then it is diagonal.Lemma 7

Prove the lemma. Hint: Write R as a 2×2 block matrix and solve the four resultingExercise 281
equations.

Prove the theorem. ¤Exercise 282

It follows that for normal matrices ||f(A)|| = ||f(Λ)||, where the diagonal entries
of Λ are the eigenvalues of A. Therefore it becomes essential to locate, at least
approximately, the eigenvalues of A in the complex plane.

Let A be normal with Schur decomposition A = QΛQH . Consider the expression
(QHAQ)H and use it to prove the next three exercises.

Show that the eigenvalues of a unitary matrix must lie on the unit circle.Exercise 283

Show that the eigenvalues of a Hermitian matrix must be real.Exercise 284

Show that the eigenvalues of a skew-Hermitian matrix must be purely imaginary.Exercise 285

Show that the eigenvectors of a normal matrix corresponding to distinct eigenvaluesExercise 286
must be mutually orthogonal. Hint: Use the Schur decomposition.

Write down a family of normal matrices that is neither unitary nor Hermitian norExercise 287
skew-Hermitian. Hint: Use the Schur decomposition.

Show that eskew-Hermitian = unitary.Exercise 288

Show that eiHermitian = unitary.Exercise 289

Let A be a square real matrix. Suppose λ is an eigenvalue of A with a non-zeroExercise 290
imaginary part.

• Show that the corresponding eigenvector v, must have real and imaginary parts
that are linearly independent when considered as real vectors..

• Show that λ̄ must also be an eigenvalue of A.

• Show that an eigenvector for λ̄ can be constructed from v.

Show that a real orthogonal matrix with an odd number of rows and columns mustExercise 291
have either 1 or −1 as one of its eigenvalues.
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5.8 Real symmetric matrices

Real symmetric matrices play the role of real numbers in matrix analysis.

Let A = AR + iAI denote the real and imaginary parts of the m × n matrix A.Exercise 292
Show that

T (A) =

(
AR AI

−AI AR

)
,

is a faithful representation of the complex matrix A as a real matrix of twice the
size, in the sense that for all complex matrices A and B

• T (αA) = αT (A)

• T (AH) = T (A)T

• T (A + B) = T (A) + T (B)

• T (AB) = T (A)T (B)

whenever the operations are well-defined.

Show thatExercise 293

• T (unitary) = orthogonal

• T (Hermitian) = symmetric

• T (skew-Hermitian) = skew-symmetric

Let A be a real symmetric matrix. Then there exists a real orthogonal matrix QTheorem 3
and a real diagonal matrix Λ such that A = QΛQT and Λi,i ≥ Λi+1,i+1.

Proof. Just repeat the proof of the Schur decomposition and observe that you can
use orthogonal transforms instead of unitary transforms since the eigenvalues are
known to be real. Also, symmetry will help to directly produce a diagonal rather
than upper-triangular matrix.

Work out a detailed proof. ¤Exercise 294

From now on we will use the notation Λii = λi for convenience.

Let A be a real m× n matrix. Show thatExercise 295

||A||2 = max
06=z∈Cn

||Az||2
||z||2

= max
06=x∈Rn

||Ax||2
||x||2

.
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Hint: Exercise 172 might be useful.

Redo the proof of the SVD and show that if A is a real (possibly non-square) matrix,Exercise 296
then there exist real orthogonal matrices U and V such that A = UΣVT , with Σ
having non-zero entries only on its principal diagonal, and Σi,i ≥ Σi+1,i+1 ≥ 0.

Let A be a real symmetric matrix.Exercise 297

• Let A = QΛQT be its Schur decomposition. Show how to use it to write down
the SVD of A.

• Let A = UΣVT be its SVD. Is it always possible to infer the Schur decomposition
directly from the SVD? Hint: (

−1 0
0 1

)
.

Let A be a m×n matrix. Use the SVD of A to write down the Schur decompositionExercise 298
of AHA and AAH . You cannot use these formulas to directly infer the SVD of A
from the Schur decompositions of AHA and AAH . Why?

Let A be an n × n real symmetric matrix with eigenvalues λi. Show that for realExercise 299
x 6= 0

λn ≤
xTAx
xTx

≤ λ1.

Hint: Use the Schur decomposition to convert the Rayleigh quotient (the frac-
tional middle term above) into the form

yTΛy
yTy

.

Let A be a real n × n symmetric matrix with eigenvalues λi in decreasing order 102Courant-Fischer
λi ≥ λi+1. Then

λk = max
dim(U)=k

min
06=x∈U

xTAx
xTx

.

Proof.

Use Exercise 299 to prove the theorem for k = 1 and k = n.Exercise 300

Now fix k to be a number between 1 and n. Let qi denote column i of the matrix
Q from the Schur decomposition of A = QΛQT . First pick U = span{q1, · · · , qk}.
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Show that for this choice of UExercise 301

min
06=x∈U

xTAx
xTx

= λk.

Hint: Note that Aqi = λiqi. Then look at Exercise 299.

It follows that

max
dim(U)=k

min
06=x∈U

xTAx
xTx

≥ λk.

Next let U be any subspace of Rn of dimension k. Consider the subspace V =
span{qk, . . . , qn}. Since dim(U) = k and dim(V) = n − k + 1, it follows that
U ∩ V 6= {0}.

Show that dim(U ∩ V) ≥ 1.Exercise 302

Pick a non-zero z ∈ U ∩ V . It can be represented as z =
∑n

i=k αiqi.

Show thatExercise 303

zTAz
zTz

≤ λk.

Hint: Use Exercise 299.

From this it follows that for any k-dimensional subspace U of Rn

min
06=x∈U

xTAx
xTx

≤ λk.

Therefore it follows that

max
dim(U)=k

min
06=x∈U

xTAx
xTx

≤ λk.

Therefore the theorem is true. ¤

Show thatExercise 304

λk = min
dim(U)=n−k+1

max
06=x∈U

xTAx
xTx

.

Hint: Consider −A.

We can now derive a perturbation result for the eigenvalues of real symmetric ma-
trices.
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Let A and E be real symmetric n × n matrices. Let λi(A) denote the eigenvaluesTheorem 4
of A in decreasing order. Then

λi(A) + λn(E) ≤ λi(A + E) ≤ λi(A) + λ1(E).

This shows that the eigenvalues of real symmetric matrices depend continuously
on the matrix entries as long as the change leaves the matrix real and symmetric.
Furthermore it shows that the eigenvalues of a real symmetric matrix are well-
conditioned with respect to absolute perturbations.

Proof. Let A = QΛQT denote the Schur decomposition of A with eigenvalues in
decreasing order. Let qi denote column i of Q and let Uk = span{qk, . . . , qn}.

Using the min-max version of the Courant-Fischer theorem in Exercise 304 to es-Exercise 305
tablish that

λk(A + E) ≤ max
06=x∈Uk

xTAx
xTx

+ max
06=x∈Uk

xTEx
xTx

.

From this infer thatExercise 306

λk(A + E) ≤ λk(A) + λ1(E).

From this infer thatExercise 307

λk(A + E) ≥ λk(A) + λn(E)

Hint: You can use the previous inequality with A → A + E and E → −E, or you
can repeat the earlier argument with the max-min version of the Courant-Fischer
theorem. ¤

Show that ||A||2 = max{|λ1(A)|, |λn(A)|}, when A is a real n×n symmetric matrix,Exercise 308
with eigenvalues in decreasing order.

Show that |λi(A + E)− λi(A)| ≤ ||E||2, when A and E are real symmetric matricesExercise 309
with eigenvalues in decreasing order.

Next we consider perturbations that can change the size of the matrix.

Let A be a real n× n symmetric matrix partitioned as follows 103Cauchy Inter-
lacing Theorem

A =

(
B c
cT δ

)
,

where δ is a real number. Then
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λn(A) ≤ λn−1(B) ≤ · · · ≤ λk(B) ≤ λk(A) ≤ λk−1(B) ≤ · · · ≤ λ1(B) ≤ λ1(A).

Proof. Let B = QΛQT denotes the Schur decomposition of B with eigenvalues in
decreasing order. Let qi denote column i of Q. Define the range space

Uk = R
(

qk−1 . . . qn−1

0 · · · 0

)
.

Note that there are only n− 1 columns in Q.

Using the min-max version of the Courant-Fischer theorem show thatExercise 310

λk(A) ≤ max
06=x∈Uk

xTAx
xTx

= λk−1(B).

Either apply the previous inequality to −A and establish thatExercise 311

λk(B) ≤ λk(A),

or repeat the argument with the max-min version of the Courant-Fischer theorem. ¤
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5.9 Cholesky factorization

While the Schur decomposition reveals a lot about symmetric matrices, it is hard
to compute since in general there are no closed-form formulas.

A matrix A is said to be positive semi-definite if xHAx ≥ 0 for all x. 104Positive semi-
definite

Show that if a matrix is Hermitian positive semi-definite then the diagonal entriesExercise 312
are non-negative.

A matrix B is said to be a principal sub-matrix of the matrix A if there exists a 105Principal
sub-matrix permutation P such that

A = P
(

B ∗
∗ ∗

)
PT .

Show that every principal sub-matrix of a positive semi-definite matrix is positiveExercise 313
semi-definite.

Show that the eigenvalues of a Hermitian positive semi-definite matrix are non-Exercise 314
negative.

Show that if AAH is a Hermitian positive semi-definite matrix.Exercise 315

Show that every Hermitian positive semi-definite matrix can be written in the formExercise 316
AAH for some suitable A. Hint: Use the Schur decomposition.

A matrix A is said to be positive definite if xHAx > 0 for all x 6= 0. 106Positive definite

Repeat the previous exercises with suitable modifications for Hermitian positiveExercise 317
definite matrices.

Let A be a Hermitian positive definite matrix. Then there exists a non-singular 107Cholesky fac-
torization lower-triangular matrix G with positive diagonal entries such that A = GGH .

Proof. The proof is a repetition of the LU factorization proof, except that it does
not require the use of permutations.

Furnish the proof. ¤Exercise 318
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5.10 Problems

Let A be a real (possibly non-square) matrix. LetProblem 11

B =

(
0 AT

A 0

)
.

Show that B is a real symmetric matrix. Show that the Schur decomposition of B
can be written in terms of the SVD of A. Hint: You can find a permutation Π such
that

Π

(
0 ΣT

Σ 0

)
ΠT ,

is a block diagonal matrix with each block of size 2× 2 at most.

Let A and E be real (possibly non-square) matrices. Let σi(A) denote the singularProblem 12
values of A in decreasing order. Show that

|σi(A + E)− σi(A)| ≤ ||E||2.

Let σi denote the singular values of A. Show that σk+1 is the 2-norm distance of AProblem 13
to the nearest rank-k matrix.

Let A be an m× n real matrix partitioned as followsProblem 14

A =

(
B
cT
)

,

where c is a real column vector. Show that

· · · ≤ σk(B) ≤ σk(A) ≤ σk−1(B) ≤ · · · ≤ σ1(B) ≤ σ1(A)

where σi(A) denotes the singular values of A in decreasing order.

Use the real and imaginary parts of the SVD of A, to write down the real SVD ofProblem 15
the real matrix T (A), where T is defined in Exercise 292.

Wielandt–Hoffman. This problem is quite challenging. Let A and B be n × nProblem 16
normal matrices. Let λi(A) denote the eigenvalues of A. Show that

min
σ∈Permutations

n∑
i=1

|λi(A)− λσ(i)(B)|2 ≤ ||E||2F .

Show thatProblem 17

min
X∈Cn×m

||AX− I||F = ||AA† − I||F .
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6 Tensor Algebra

In this chapter we consider the case when both entries in A and x must be considered
as variables in the expression Ax. In general more terms could be involved in the
product; so we are concerned with multi-linear analysis.

6.1 Kronecker product

Again we prefer to introduce Kronecker products of matrices as a direct concrete
realization of tensor products.

Let A and B be two matrives. We define the tensor or Kronecker product as follows 108Kronecker prod-
uct

A⊗B =

A11B A12B · · ·
A21B A22B · · ·

... ... ...

 .

Show that if x and y are column vectors thenExercise 319

xyH = x⊗ yH = yH ⊗ x.

Give an example where A⊗B 6= B⊗A.Exercise 320

Show that there are permutations P1 and P2 such that A⊗B = P1(B⊗A)P2.Exercise 321

Show thatExercise 322

• (αA)⊗B = α(A⊗B) = A⊗ (αB).

• (A + B)⊗C = A⊗C + B⊗C.

• A⊗ (B + C) = A⊗B + A⊗C.

• (A⊗B)⊗C = A⊗ (B⊗C)

• (A⊗B)(C⊗D) = (AC)⊗ (BD)

• (A⊗B)H = AH ⊗BH

• I⊗ I = I

• (A⊗B)−1 = A−1 ⊗B−1

• Hermitian⊗ Hermitian = Hermitian
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• Unitary⊗ Unitary = Unitary

• Hermitian⊗ Skew-Hermitian = Skew-Hermitian

• Skew-Hermitian⊗ Skew-Hermitian = Hermitian

• Upper-triangular⊗ Upper-triangular = Upper-triangular

• d
dt(A(t)⊗B(t)) = d

dtA(t)⊗B(t) + A(t)⊗ d
dtB(t)

Let A = UΣVH and B = XΛYH be SVDs. Show that the SVD of A⊗B is givenExercise 323
by

(U⊗X)(Σ⊗ Λ)(V⊗Y)H .

Show that rank(A⊗B) = rank(A) rank(B).Exercise 324

Let A = VJV−1 and B = WGW−1 denote Jordan decompositions. Show thatExercise 325

A⊗B = (V⊗W)(J⊗G)(V⊗W)−1.

Conclude that λi(A⊗B) = λr(A)λs(B). Note that this is not a Jordan decompo-
sition.

Let A be an m×m matrix and B be an n× n matrix. Show thatExercise 326

• trace(A⊗B) = trace(A) trace(B).

• (A⊗ In)(Im ⊗B) = A⊗B = (Im ⊗B)(A⊗ In).

Show thatExercise 327

diag{Ai}ni=1 ⊗ diag{Bj}mj=1 = diag{diag{Ai ⊗Bj}mj=1}ni=1.
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6.2 Tensor Product Spaces

At this point it is a good idea to look at the vector space structure of tensor products.
We will avoid an abstract approach (since I don’t want to define dual spaces).

Let Fij denote vector spaces for positive integers i1, i2, . . ., in. We define the tensor
product of these vector spaces via the formula

⊗nj=1F
ij = Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fin = span{⊗nj=1xj |xj ∈ Fij , j = 1, . . . , n}.

Remember that span only allows finite linear combinations of its elements. There-
fore an arbitrary element of ⊗jFij can be written in the form

∑l
k=1 αk ⊗nj=1 xkj ,

where xkj ∈ Fij .

Show that ⊗nj=1F
ij is a sub-space of FΠn

j=1ij , where Πn
j=1ij = i1i2 · · · in.Exercise 328

Actually ⊗nj=1F
ij = FΠn

j=1ij . We will prove this by constructing a suitable basis.
However, to keep the notation simple we will concentrate on the important case
when ij = m for all j. In this case we will use the notation ⊗nFm.

Show that if ⊗ixi = 0 then at least one of xi = 0.Exercise 329

Show that there is a vector in⊗2R2 that is not of the form x⊗y. Hint: ( 1 1 1 0 )T .Exercise 330

At this point it is useful to introduce some notation about multi-indices. Let I
denote the n-tuple (i1, i2, . . . , in) where 1 ≤ ij ≤ m. We will then use the notation

⊗i∈Ixi = ⊗nj=1xij .

We will assume that n-tuples I are ordered lexicographically; that is,

(i1, i2, . . . , in) < (j1, j2, . . . , jn),

iff ik = jk for k = 1, . . . , l, and il+1 < jl+1.

Let ei denote column i of the identity matrix. The length of ei will be apparent from
the context. Note that multiple occurences of ei in the same formula can denote
column vcetors of different lengths.

It is easy to check that the mn vectors

⊗i∈Iei = eI ,

form an orthonormal basis for ⊗nFm.
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Check this claim.Exercise 331

Write down a basis for ⊗nj=1F
ij from bases for Fij .Exercise 332

We are now ready to compute the Jordan decomposition of the tensor product of
two nilpotent matrices.

Show that the smallest integer k for which (Zp ⊗ Zq)k = 0, is k = min(p, q). Hint:Exercise 333
(Zp ⊗ Zq)r = Zrp ⊗ Zrq.

From now on without loss of generality we will assume p ≤ q.

Show that if v ∈ N (A) then v⊗w ∈ N (A⊗B).Exercise 334

Show that Zr−1
p er 6= 0, while Zrper = 0. Hint: Zpei = ei−1.Exercise 335

Therefore {Zkpep}
p−1
k=0 forms a right Jordan chain of length p for Zp.

Show that {(Zp ⊗ Zq)k(ep ⊗ er)}p−1
k=0 forms a right Jordan chain of length p forExercise 336

p ≤ r ≤ q.

This gives us q − p + 1 linearly independent right Jordan chains. So there are at
least q− p + 1 Jordan blocks of size p in the Jordan decomposition of Zp⊗Zq when
p ≤ q. In fact there are exactly q − p + 1 Jordan blocks of size p. This will become
apparent soon. Define the following subspace

Up = span{ep−i ⊗ er−i | i = 0, . . . , p− 1, r = p, . . . , q}.

Note that dim(Up) = p(q − p + 1) and dim(U⊥p ) = p(p− 1).

Now consider the two chains {(Zp ⊗ Zq)k(ep−1 ⊗ eq)}p−2
k=0 and {(Zp ⊗ Zq)k(ep ⊗

ep−1)}p−2
k=0, of length p− 1. Observe that the starting point of the chains, ep−1 ⊗ eq

and ep ⊗ ep−1, are not in the subspace Up, nor are any subsequent members of the
chain in Up. Therefore these are two new chains of length p − 1 which establishes
that there are at least two Jordan blocks of size p− 1. In fact there are exactly two
Jordan blocks of size p− 1 as will be apparent soon. Define the subspace

Up−1 = span{ep−1−i ⊗ eq−i | i = 0, . . . , p− 2}+

span{ep−i ⊗ ep−1−i | i = 0, . . . , p− 2}.

Observe that dim(Up−1) = 2(p− 1) and that Up ⊥ Up−1.

We can continue in this way to define new linearly independent right Jordan chains.
In general for any integer 1 ≤ r < p we define two right Jordan chains, {(Zp ⊗
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Zq)k(ep−r ⊗ eq)}p−r−1
k=0 and {(Zp ⊗ Zq)k(ep ⊗ ep−r)}p−r−1

k=0 , of length p − r. Define
the subspace

Up−r = span{ep−r−i ⊗ eq−i | i = 0, . . . , p− r − 1}+

span{ep−i ⊗ ep−r−i | i = 0, . . . , p− r − 1}.

Observe that dim(Up−r) = 2(p − r) and that Us ⊥ Up−r for s > p − r. Therefore
there are at least two Jordan blocks of size p − r. In fact there are exactly two
Jordan blocks of size p− r as will be apparent soon.

Finally observe that

dim(Up) +

p−1∑
r=1

dim(Up−r) = p(q − p + 1) +

p−1∑
r=1

2(p− r) = pq = dim(Cp ⊗ Cq).

Therefore it follows that we have found a complete set of Jordan chains and all our
claims are proved: there are q− p+1 Jordan blocks of size p and two Jordan blocks
of size 1 through p− 1.

If you have a nice way to express the Jordan decomposition of Zp1 ⊗ · · · ⊗Zpn , and
(λI + Zp)⊗ (µI + Zq), please let me know.
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6.3 Symmetric tensors
The full tensor product spaces are not very interesting since they are the same
as (isomorphic to) Cn. However, they contain interesting subspaces that occur
frequently. We have met some of them already; namely, the class of Hermitian and
skew-Hermitian matrices.

Let Pn denote the set of all permutations of the integers 1, . . . , n. Let xi ∈ Rm for
i = 1, . . . , n. We define the symmetric tensor product of xi to be

x1 ∨ x2 ∨ · · · ∨ xn =
1

n!

∑
σ∈Pn

⊗ni=1xσ(i).

We denote the sub-space of ⊗nRm spanned by all symmetric tensor products of
n vectors from Rm as ∨nRm. We will use the convenient notation ∨ni=1xi for the
symmetric tensor product of xi.

Show thatExercise 337

x1 ∨ · · · ∨ xi ∨ · · · ∨ xj ∨ · · · ∨ xn = x1 ∨ · · · ∨ xj ∨ · · · ∨ xi ∨ · · · ∨ xn.

We will write this fact succinctly as ∨ni=1xi = ∨ni=1xσ(i) for any permutation σ ∈ Pn.
(Prove it.)

Give an example of x, y, z ∈ Rm, whereExercise 338

(x ∨ y)⊗ z + z⊗ (x ∨ y) 6= c(x ∨ y ∨ z),

for any choice of the constant c. This exercise shows that a naive definition of
symmetric tensor product is not associative.

Let Gm,n = {(i1, i2, . . . , in) : 1 ≤ ik ≤ ik+1 ≤ m}. That is Gm,n is the set of n-
tuples with components from the set {1, . . . ,m} in non-decreasing order. Remember
that we use the notation I = (i1, . . . , in) to denote n-tuples. Suppose that there
are ni occurences of the number i in the tuple I. Then we will use the notation
I! = n1!n2! · · ·nm!.

We claim that the set of symmetric tensors

gI =

√
n!

I!
∨i eII

, I ∈ Gm,n,

forms an orthonormal basis for ∨nRm.

Show that if I,J ∈ Gm,n and I 6= J then gTI gJ = 0. Hint: Do a small exampleExercise 339
first.
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Next we check that they have unit length. Let I = (i1, . . . , in) ∈ Gm,n. Then

gI =
1√
I!n!

∑
σ∈Pn

⊗nk=1eIσ(k)
.

Therefore

gTI gI =
1

I!n!

∑
σ,τ∈Pn

⊗nk=1eTIσ(k)
eIτ(k)

= 1.

To see this consider a term in the sum for a fixed σ. Clearly the term evaluates to 1
if τ = σ. But any τ which only permutes components in I that are identical among
themselves will still yield a term that evaluates to 1. For each σ there are I! such τ
terms. Therefore the right-hand side adds up to 1. This establishes that the gI for
I ∈ Gm,n form an orthonormal set.

To finish establishing that it is a basis we must show that they span ∨nRm.

Establish that it is sufficient to show that an elementary symmetric tensor, ∨ni=1xi,Exercise 340
can be written as a linear combination of the gI ’s.

Let Fm,n denote the set of all n-tuples formed from the integers between 1 and m
(inclusive). Then observe that

∨ni=1xi =
1

n!

∑
σ∈Pn

⊗nl=1xσ(l)

=
1

n!

∑
σ∈Pn

⊗nl=1

m∑
j=1

ejxj,σ(l)

=
1

n!

∑
σ∈Pn

∑
I∈Fm,n

⊗nl=1eIl
xIl,σ(l) (why?)

=
∑

I∈Fm,n

1

n!

∑
σ∈Pn

⊗nl=1eIl
xIl,σ(l)

=
∑

I∈Fm,n

1

n!

(∑
σ∈Pn

Πn
l=1xIl,σ(l)

)
⊗nl=1 eIl

.

Now observe that for a fixed I ∈ Gm,n and any τ ∈ Pn∑
σ∈Pn

Πn
l=1xIl,σ(l) =

∑
σ∈Pn

Πn
l=1xIτ(l),σ(l).

However for each I ∈ Gm,n there are only n!/I! occurences of τ(I) in the actual
sum. Therefore we can group the terms further together and obtain
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∨ni=1xi =
∑

I∈Fm,n

1

n!

(∑
σ∈Pn

Πn
l=1xIl,σ(l)

)
⊗nl=1 eIl

=
∑

I∈Gm,n

1

n!

(∑
σ∈Pn

Πn
l=1xIl,σ(l)

)
1

I!

∑
τ∈Pn

⊗nl=1eIτ(l)

=
∑

I∈Gm,n

(
1

I!

∑
σ∈Pn

Πn
l=1xIl,σ(l)

)
∨nl=1 eIl

.

(6.1)

Hence we have shown that gI for I ∈ Gm,n is an orthonormal basis for ∨nRm.

Therefore dim(∨nRm) is the cardinality of the set Gm.n. Let s(m, n) denote the
latter number. Observe that s(1, n) = 1 and s(m, 1) = m. Now let us see how
we can generate the tuples in Gm.n using tuples in Gm−1,n and Gm,n−1. Partition
the tuples in Gm,n into two sets; let the first set of tuples start with the number 1,
and the second set be everything else. Clearly by prepending a 1 to every tuple in
Gm,n−1 we can obtain exactly the first set. Similarly we can obtain the second set by
taking every tuple in Gm−1,n and adding 1 to every component. Therefore it follows
that s(m, n) = s(m, n−1)+ s(m−1, n). With the initial conditions s(1, n) = 1 and
s(m, 1) = m, this recursion uniquely specifies s(m, n) for all positive integers.

Verify thatExercise 341

dim(∨nRm) = s(m, n) =

(
m + n− 1

n

)
.

Next we compute the orthogonal projector P∨, from ⊗nRm onto ∨nRm via its action
on the orthogonal basis eI for I ∈ Fm,n

P∨(⊗i∈Iei) = ∨i∈Iei∈I .

We begin by checking if P∨ is idempotent. Clearly it is sufficient to check if P∨gI =
gI for I ∈ Gm,n. Observe that

P∨

(
1

n!

∑
σ∈Pn

⊗ni=1eIσ(i)

)
=

1

n!

∑
σ∈Pn

P∨
(
⊗ni=1eIσ(i)

)
=

1

n!

∑
σ∈Pn

∨ni=1eIσ(i)

=
1

n!

∑
σ∈Pn

∨ni=1eIi

= ∨ni=1eIi
,
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which proves that P∨ is idempotent. This also explains the presence of the factor
n! in the definition of the symmetric tensor product ∨.

Finally we check if x − P∨x is perpendicular to P∨x for all x ∈ ⊗nRm. It is
sufficient to check that ⊗ieIi

− P∨(⊗ieIi
) is perpendicular to gJ for I ∈ Fm,n and

J ∈ Gm,n. We break the calculation up into 2 cases. First we assume that there is
no permutation σ such that σ(I) = J . Then clearly(

1

n!

∑
σ∈Pn

⊗ni=1eJσ(i)

)T (
⊗ni=1eIi

− 1

n!

∑
σ∈Pn

⊗ni=1eIσ(i)

)
= 0.

Next we consider the case when τ(I) = J for some τ ∈ Pn. Then we have that(
1

n!

∑
σ∈Pn

⊗ni=1eJσ(i)

)T (
⊗ni=1eIi

− 1

n!

∑
σ∈Pn

⊗ni=1eIσ(i)

)
=
J !

n!
− 1

(n!)2
J !n!.

Therefore we have shown that P∨ is an orthogonal projector onto ∨nRm.

For I ∈ Gm,n1 and J ∈ Gm,n2 we have by an easy calculation that

P∨

 1

n1!

∑
σ∈Pn1

⊗n1
i=1eIσ(i)

⊗

 1

n2!

∑
τ∈Pn2

⊗n2
i=1eJτ(i)

 = ∨n1+n2
i=1 e(I,J )i .

Hence we can extend the definition of ∨, the symmetric tensor product, to a binary
operator between two symmetric tensors by first defining it on bases for ∨nRm:(

∨n1
i=1eIi

)
∨
(
∨n2
i=1eJi

)
= P∨

((
∨n1
i=1eIi

)
⊗
(
∨n2
i=1eJi

))
= ∨n1+n2

i=1 e(I,J )i .

More generally for x ∈ ∨n1Rm and y ∈ ∨n2Rm, we have

x =
∑

I∈Gm,n1

xI ∨n1
i=1 eIi

, and y =
∑

I∈Gm,n2

yI ∨n2
i=1 eIi

.

Hence

x ∨ y = P∨(x⊗ y) =
∑

I∈Gm,n1
J∈Gm,n2

xI yJ ∨n1+n2
i=1 e(I,J )i .

Show that for symmetric tensors x, y and z, and scalar αExercise 342

• (x + αz) ∨ y = x ∨ y + α(z ∨ y)

• x ∨ y = y ∨ x

• (x ∨ y) ∨ z = x ∨ (y ∨ z)
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Let xi = x for i = 1, . . . , n. Show that ⊗ni=1xi = ⊗nx = ∨ni=1xi = ∨nx.Exercise 343

An instant question is whether span{⊗nx : x ∈ Rm} = ∨nRm?. The answer is yes.
To see this note that it is sufficient to show that an arbitrary basis element ∨ieIi

for some I ∈ Gm,n is in the span. Without loss of generality assume that I only
contains the first k integers from 1 to k. In particular let us assume that the number
i occurs exactly ji times in I. We will show that this basis vector can be written as a
linear combination of the symmetric tensors ∨n(

∑k
i=1 αiei) for suitable choice of αi.

To make this calculation easier we will exploit the fact that the symmetric tensor
product between symmetric tensors is commutative, associative and distributive and
write x∨y as xy whenever x and y are symmetric tensors. Therefore we have that
∨nx = xn, for example. Observe that(

k∑
i=1

αiei

)n
=

n∑
i1+i2+···+ik=0

n!

i1!i2! · · · ik!
αi11 αi22 · · ·α

ik
k ei11 ei22 · · · e

ik
k .

Now we take a linear combination of N = (n + 1)k of these terms and obtain
N∑
p=1

βp

(
k∑
i=1

αp,iei

)n
=

n∑
i1+i2+···+ik=0

n!

i1!i2! · · · ik!
ei11 ei22 · · · e

ik
k

N∑
p=1

βpα
i1
p,1α

i2
p,2 · · ·α

ik
p,k.

Therefore to recover just the term with il = jl we must pick βp and αi,p such that
N∑
p=1

βpα
i1
p,1α

i2
p,2 · · ·α

ik
p,k =

{
0, if (i1, . . . , ik) 6= (j1, . . . , jk),
1, if (i1, . . . , ik) = (j1, . . . , jk).

We pick αp,1 = 1 and αp,i = xp, where

x0 < x1 < · · · < xN .

We then observe that βp is obtained by solving an adjoint multi-dimensional Vander-
monde system, which, with our choice of αp,i is known to be invertible. In particular
the coefficient matrix can be written as k-th tensor power of a (n + 1) × (n + 1)
Vandermonde matrix. This establishes our claim.

Inner products of elementary symmetric tensors are given by the permanents of
certain matrices.

The permanent of an n× n matrix is defined to be 109Permanent
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per(A) =
∑
σ∈Pn

Πn
i=1Ai,σ(i).

Let X and Y be m × n matrices. We will use the notation Xi to denote column i
of X. We now show that

(∨ni=1Xi)
T (∨ni=1Yi) =

1

n!
per(XTY).

We calculate as follows

(∨ni=1Xi)
T (∨ni=1Yi) =

1

(n!)2

(∑
σ∈Pn

⊗iXT
σ(i)

)(∑
τ∈Pn

⊗iYτ(i)

)

=
1

n!

(∑
σ∈Pn

Πn
i=1XT

i Yσ(i)

)
,

which proves the claim.

Observe that in equation 6.1 we give an explicit formula to expand a symmetricExercise 344
tensor in terms of ∨i∈Iei for I ∈ Gm,n. The above formula can also be used for this
purpose by choosing for example Yi = eIi

. However there seems to be an extra I!
in one of the formulas. Can you reconcile them?

Show that per(XTX) ≥ 0.Exercise 345

Show thatExercise 346

|per(XTY)| ≤
√

per(XTX) per(YTY).

By placing restrictions on the basis set we can get lower dimensional symmetric
subspaces. Let U = ( U1 U2 ), be an orthogonal m×m matrix with U1 containing
m1 columns. Let ui denote the columns of U. Denote

span{∨ni=1uIi
|I ∈ Gm1,n} = ∨nR(U1).

Note that ∨nR(U1) is a subspace of ∨nRm.

Show that dim(∨nRm1) = dim(∨nR(U1)).Exercise 347

Denote

span{x ∨ y|x ∈ ∨n1R(U1), y ∈ ∨n2R(U2)} = (∨n1R(U1)) ∨ (∨n2R(U2)).

Show that dim((∨n1R(U1)) ∨ (∨n2R(U2))) = dim(∨n1R(U1)) dim(∨n2R(U2)).Exercise 348
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Show thatExercise 349

∨nRm = ⊕nj=0(∨jR(U1)) ∨ (∨n−jR(U2)).

Cross check by verifying independently that(
m1 + m2 + n− 1

n

)
=

n∑
j=0

(
m1 + j − 1

j

)(
m2 + n− j − 1

n− j

)
.

Hint: To proceed first extend the sum to(
m1 + m2 + n− 1

n

)
=

m2+n−1∑
j=0

(
m1 + j − 1

j

)(
m2 + n− j − 1

n− j

)
,

and then convert it to(
m1 + m2 + n− 1

n

)
=

m2+n−1∑
j=0

(
m1 + j − 1

m1 − 1

)(
m2 + n− j − 1

m2 − 1

)
.

Now use identity (5.26) from Concrete Mathematics by Graham, Knuth and Patash-
nik.

Finally all of these formulas remain true if we merely require that U is non-singular.
Verify.

It is also convenient to be detect a symmetric tensor from its coefficients in the
canonical basis eI for I ∈ Fm,n. Let x =

∑
I∈Fm,n

x̃IeI =
∑
J∈Gm,n

xJ gJ .

Show that x̃η(I) = x̃I for all exchange permutations η.Exercise 350

Conclude that x̃σ(I) = x̃I for all permutations σ.Exercise 351

This explains why symmetric tensors form such a small subspace of ⊗nRm. This is
also an exact characterization of symmetric tensors.

Show that x =
∑
I∈Fm,n

xIeI ∈ ∨nRm iff xσ(I) = xI for all permutations σ.Exercise 352

Therefore we can characterize the symmetric tensors as those x =
∑
I∈Fm,n

xIeI
that are in the nullspace of the equations

xI = xη(I), for all exchanges η and all I ∈ Gm,n.

One is then lead to consider other “symmetry” conditions on the tensor. Here is a
problem from Bishop and Goldberg.
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Find all x =
∑3

i,j,k=1 xi,j,ke(i,j,k) ∈ ⊗3Rm that satisfy the “symmetry” equationsExample 6

xi,j,k + xi,k,j = 0

xi,j,k + xj,k,i + xk,i,j = 0,

for i, j, k = 1 to m. The first set of equations imply that the free variables can be
chosen from the set xi,j,k with 1 ≤ j < k ≤ m. Of course xi,j,j = 0. This only leaves
the second set of equations. We now claim that we can pick only the variables xi,j,k
with 1 ≤ j < k ≤ m and 1 ≤ i ≤ k ≤ m as free. First let us check if a variable xp,q,r
which does not satisfy the conditions, that is q < r < p, can be determined from
the putative free variables. Observe that

xp,q,r = −xq,r,p + xr,q,p,

and all the variables on the right are free, since q, r < p. Obviously a variable xp,q,r
with r < q is determined by xp,r,q. Further those with r = q are zero. Hence we
see that all variables are determined by the free variables. The question is are all
equations simulatenously satisfied; that is, did we pick too many free variables. We
see that the first set of equations is consistent with our choice as they each determine
exactly one basic variable. For the second set, for each choice of triplet (p, q, r) there
is an equation

xp,q,r + xq,r,p + xr,p,q = 0.

If all 3 integers are distinct then there is exactly one basic variable which does not
appear in any other such equation. If two of the integers are the same then we repeat
a previous anti-symmetry equation. If all three integers are same that variable is 0.
So we see the free variables leave all the equations consistently true.

Now we look at a more complicated problem from Bishop and Goldberg. This
concerns the symmetry conditions satisfied by the Riemannian curvature tensor.

Consider all x =
∑m

i,j,k,l=1 xi,j,k,lei,j,k,l ∈ ⊗4Rm that satisfy the “symmetry” condi-Example 7
tions

1. xi,j,k,l = −xj,i,k,l

2. xi,j,k,l = −xi,j,l,k

3. xi,j,k,l + xi,k,l,j + xi,l,j,k = 0

We first show that any such tensor must automatically satisfy an extra symmetry
condition: xi,j,k,l = xk,l,i,j . To see this first observe that
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xi,j,k,l = −xi,k,l,j − xi,l,j,k

= xk,i,l,j + xl,i,j,k

= −xk,l,j,i − xk,j,i,l − xl,j,k,i − xl,k,i,j

= 2xk,l,i,j + xk,j,l,i + xl,j,i,k.

Next we do a similar derivation with a slight modification

xi,j,k,l = −xj,i,k,l

= 2xk,l,i,j + xk,i,j,l + xl,i,k,j .

Adding up these two formulae we get

2xi,j,k,l = 4xk,l,i,j + xk,j,l,i + xk,i,j,l + xl,j,i,k + xl,i,k,j

= 4xk,l,i,j − xk,l,i,j − xl,k,j,i,

which proves our claim. Next we establish that if xT (v⊗w⊗v⊗w) = 0 for all choices
of v and w then x = 0. First observe that if v =

∑m
i=1 viei and w =

∑m
i=1 wiei

then

xT (v⊗w⊗ v⊗w) =
m∑

i,j,k,l=1

xi,j,k,lviwjvkwl = 0.

We already know from the skew-symmetry conditions on the first two and last two
variables that xiikl = xijkk = 0. Now fix (i, j, k, l) and choose v = ei and w = ek.
Then the above equation becomes

xikik = 0.

Next choose v = ei and w = ek + el. Then using the above symmetry condition we
have that

xikik + xikil + xilil + xilik = 0

xikil + xilik = 0.

But we have also established that xikil − xilik = 0. Therefore we can conclude that
xikil = 0. By a similar reasoning we can also establish that xikjk = 0. Therefore we
have now shown that variables with two or more identical indices in any position
will be 0. So the only non-zero variables are those that have four distinct integers
for their indices. Therefore consider v = ei + ej and w = ek + el. Then we have
that

xikjl + xjkil + xiljk + xjlik = 0

−xijlk − xilkj − xjilk − xjlki + xiljk + xjlik = 0

xiljk + xjlik = 0.
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This shows that we have skew-symmetry for the second and third variables also, and
an application of the skew-symmetry for the first two and last two indices, shows
that we have skew-symmetry between the first and fourth indices also. In summary
we have shown skew-symmetry between any two pairs of indices. Now we go back
to the original symmetry condition and exploit this additional skew-symmetry.

xijkl + xiklj + xiljk = 0

xijkl + xijkl + xijkl = 0,

which proves our claim. This shows that the tensor satisfying such symmetry con-
ditions must be a subspace of the subspace spanned by all tensors of the form
v ⊗ w ⊗ v ⊗ w. The containment is strict since such tensors do not have a skew-
symmetry between the first two and last two indices. Finally we show that such
tensors can be constructed out of symmetric matrices. Let bij = bji. We claim that

xijkl = bikbjl − bilbjk,

is a tensor with the symmetries of a Riemann curvature tensor. The requisite sym-
metry conditions are easily verified to be true.

A good example of use of symmetric tensors is a Taylor series expansion of a function
of several variables. Let f : Rm → R be an analytic real-valued function of m real
variables. Define the n-th derivative of f to be a symmetric tensor of order n via

∂nf(x1, . . . , xm) =
∑

I∈Gm,n

∂nf

∂xI1∂xI2 · · · ∂xIn

∨i∈I ei.

Write out ∂2f explicitly. Note that it differs from the Hessian of f by a factor of 2.Exercise 353

The reason for representing the partial derivatives as a symmetric tensor should be
obvious now. For example, if f is sufficiently nice then

∂2f

∂x1∂x2
=

∂2f

∂x2∂x1
,

and this is the reason why ∂2f is represented as a symmetric tensor.

By considering the Taylor series expansion in t of f(a + tx) it can be shown that

f(a + x) = f(a) +
∞∑
n=1

(∂nf(a))T

n!
⊗n x.

Show it assuming that f is sufficiently nice.Exercise 354
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An interesting exercise is to compute the Taylor series expansion under an affine
linear change of variables. Let φ(b + y) = a + Ay. Let g = f ◦ φ. Clearly

g(b + y) = g(b) +
∞∑
n=1

(∂ng(b))T

n!
⊗n y.

But we would like to express this in terms of f . Observe that

g(b + y) = f(a + Ay) = f(a) +
∞∑
n=1

(∂nf(a))T

n!
⊗n A⊗n y,

which shows immediately that

∂ng(b) =
(
⊗nAT

)
∂nf(a),

whenever g(b+y) = f(a+Ay). A more detailed view of this operation is presented
in the next section.
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6.4 Symmetric tensor powers
In the last section we saw how tensor powers arose naturally. In this section we look
at them more carefully. Let A denote a l×m matrix. It is clear that ⊗nA can act
on ⊗nRm to yield a tensor in ⊗nRl via the usual matrix multiplication

(⊗nA)(⊗ni=1xi) = ⊗ni=1Axi.

A simple calculation shows that ∨nRm is an invariant subspace of ⊗nA for any
m × m matrix A. It is therefore natural to study the restriction of ⊗nA to this
subspace. This restricted operator is denoted by ∨nA and called the symmetric
tensor power of A. More prosaically, let Gm.n denote the matrix whose columns are
formed from the orthonormal symmetric tensor basis gI for I ∈ Gm,n. Then the
invariance of ∨nRm under ⊗nA can be written as the equation

(⊗nA)Gm,n = Gm,n(∨nA).

Using the orthonormality of the columns of Gm,n we can infer from this an explicit
expression for ∨nA

∨nA = GT
m,n(⊗nA)Gm,n.

We will also use the notation

Gm,nx∨ = x, for x ∈ ∨nRm.

Clearly

(∨nA)(∨ni=1xi)∨ = (∨ni=1Axi)∨.

We start with a simple sequence of calculations

(⊗nA)(⊗nB) = ⊗n(AB)

(⊗nA)(⊗nB)Gm,n = (⊗n(AB))Gm,n

(⊗nA)Gm,n(∨nB) = Gm,n(∨n(AB))

Gm,n(∨nA)(∨nB) = Gm,n(∨n(AB)).

From which, using the full column-rank of Gm,n we can infer that

(∨nA)(∨nB) = ∨n(AB).

It is also possible to show that

• (∨nA)T = ∨nAT .

• (∨nA)−1 = ∨nA−1.
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• If A is either Hermitian, unitary or normal, then so is ∨nA.

• If Avi = λivi, for i = 1, . . . , n, with repetitions allowed, then

(∨nA)(∨ni=1vi)∨ = (Πn
i=1λi)(∨ni=1vi)∨.

• Let A = UΣVT be the SVD of A. Then

∨nA = (∨nU)(∨nΣ)(∨nV)T

is the SVD of ∨nA.

At this stage it is not clear that ∨nΣ is a diagonal matrix. So we compute an explicit
formula for the entries of ∨nA. Observe that for I,J ∈ Gm,n

(∨nA)I,J = gTI (⊗nA)gJ

=
n!√
I!J !

(
∨ni=1eTIi

)
(⊗nA) (∨ni=1eJi

)

=
n!√
I!J !

(
∨ni=1eTIi

)
(∨ni=1(AeJi

))

=
1

n!
√
I!J !

(∑
σ∈Pn

⊗ni=1eTIσ(i)

)(∑
τ∈Pn

⊗ni=1(AeJτ(i)
)

)

=
1√
I!J !

(∑
σ∈Pn

Πn
i=1AIi,Jσ(i)

)
.

Let us define A[I|J ] to be the n × n matrix whose (i, j) element is AIi,Jj
. Then

we can summarise our formula for ∨nA as

(∨nA)I,J =
1√
I!J !

per(A[I|J ]).

From this formula it is easy to see that the symmetric tensor product of a diagonal
matrix is another diagonal matrix and that indeed ∨nΣ contains the singular values
of ∨nA.
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6.5 Signs of permutations

Before we proceed we need to discuss the sign of a permutation. Let σ denote a
permutation of the integers 1, . . . , n. The sign of σ, denoted sgn(σ), is defined to
be either +1 or −1: it is +1 if σ can be represented as the composition of an even
number of exchanges; otherwise it is defined to be −1.

Let ηi,j denote the exchange which switches the position of the i-th and j-th integers.
Suppose

σ(1) = 2, σ(2) = 3, σ(3) = 1,

is a permutation of {1, 2, 3}, then we can decompose σ as

σ = η1,2 ◦ η1,3,

and hence sgn(σ) = +1 in this case. The natural question is whether sgn is well-
defined; can a permutation be written as both an odd number of exchanges and an
even number of exchanges? No.

A nice proof of this is given in Herstein’s Topics in Algebra. Let xi, for i = 1, . . . , n,
denote n distinct numbers in increasing order xi < xi+1. For a permutation σ of
{1, . . . , n} consider the number

τ(σ) = sgn(Πi<j(xσ(j) − xσ(i))).

It is easy to see that τ of the identity permutation is 1. Let ηi,j denote a permutation
that exchanges the number i with the number j. We claim that τ(ηi,j ◦ σ) =
τ(σ ◦ ηi,j) = −τ(σ). We compare the terms in the two formulas

τ(σ) = Πn
r=2Π

r−1
s=1(xσ(r) − xσ(s)),

τ(σ ◦ ηi,j) = Πn
r=2Π

r−1
s=1(xσ(ηi,j(r)) − xσ(ηi,j(s))).

Without loss of generality let i < j and s < r. We observe that if neither r nor s is
equal to i or j, then

xσ(ηi,j(r)) − xσ(ηi,j(s)) = xσ(r) − xσ(s).

So any change in sign must be induced by the other terms. First consider the terms
where s1 < i = r1 and s2 < i < j = r2. We note that these terms can be paired up
as follows

xσ(ηi,j(i)) − xσ(ηi,j(s1)) = xσ(j) − xσ(s2), s1 = s2.
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Hence they do not induce a net sign change either. Next consider the terms of the
form i = s1 < r1 < j and i < s2 < j = r2. These terms can be paired up as follows

xσ(ηi,j(r1)) − xσ(ηi,j(i)) = xσ(r1) − xσ(j) = (−1)(xσ(j) − xσ(s2)), s2 = r1.

Therefore each of these terms cause a sign change. The total sign change is given
by (−1)j−i−1. Next we consider the terms of the form i < s1 < j = r1 and
i = s2 < r2 < j. These terms can be paired up as

xσ(ηi,j(j)) − xσ(ηi,j(s1)) = xσ(i) − xσ(s1) = (−1)(xσ(r2) − xσ(i)), s1 = r2.

Therefore these terms cause a total sign change of (−1)j−i−1 too. Next we consider
the terms of the form i = s1 < j < r1 and j = s2 < r2. These can be paired up as

xσ(ηi,j(r1)) − xσ(ηi,j(i)) = xσ(r1) − xσ(j) = xσ(r2) − xσ(j), r1 = r2.

So these cause no sign change. Next we consider terms of the form j = s1 < r1

and i = s2 < j < r2. As in the previous argument there is no sign change for these
forms. All of the forms we have considered so far give together no sign change. This
leaves us only with the following two terms to compare

xσ(ηi,j(i)) − xσ(ηi,j(j)) = xσ(j) − xσ(i) = (−1)(xσ(i) − xσ(j)).

Therefore we have exactly one sign change and we have shown that τ(σ ◦ ηi,j) =
−τ(σ). The other version τ(σ ◦ ηi,j) = −τ(σ), is proved similarly.

Do it.Exercise 355

Show that sgn(σ) is well-defined for permutations σ.Exercise 356

Show that sgn(σ) = sgn(σ−1) for permutations σ.Exercise 357

Let I denote an r-tuple and J an s-tuple and (I,J ) the r + s-tuple obtained byExercise 358
concatenating I and J . Let σ ∈ Pr and τ ∈ Ps. Let µ ∈ Pr+s be the permutation
defined by µ(I,J ) = (σ(I), µ(J )). Show that sgn(µ) = sgn(σ) sgn(τ).
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6.6 Anti-symmetric tensors

In this section we consider probably the most important subspace of ⊗nRm. We
define the anti-symmetric tensor product (sometimes called the wedge product) of
xi to be

x1 ∧ x2 ∧ · · · ∧ xn =
1

n!

∑
σ∈Pn

sgn(σ)⊗ni=1 xσ(i).

We will use the convenient notation ∧ni=1xi for the left hand side of the above
equation. We will denote the span of all wedge products of n vectors from Rm as
∧nRm.

Show thatExercise 359

x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xn = (−1) x1 ∧ · · · ∧ xj ∧ · · · ∧ xi ∧ · · · ∧ xn.

We will write this fact succinctly as ∧ni=1xi = sgn(σ)∧ni=1 xσ(i) for any permutation
σ ∈ Pn. (Prove it.)

Give an example of x, y, z ∈ Rm such thatExercise 360

(x ∧ y)⊗ z− z⊗ (x ∧ y) 6= c(x ∧ y ∧ z),

for any scalar c. This shows that a naive definition of anti-symmetric tensor product
is not associative.

Let Hm,n = {(i1, i2, . . . , in) | 1 ≤ ik < ik+1 ≤ m}. That is, Hm,n is the set of
n-tuples with strictly increasing components with values restricted to the integers
1, . . . ,m. We claim that set of anti-symmetric tensors

hI =
√

n! ∧ni=1 eIi
, I ∈ Hm,n,

is an orthonormal basis for ∧nRm.

Show that hTIhJ = 0 for I,J ∈ Hm,n and I 6= J .Exercise 361

Show that hTIhI = 1 for I ∈ Hm,n.Exercise 362

Show that if I ∈ Gm,n, and I /∈ Hm,n, then ∧ieIi
= 0.Exercise 363

So we just need to show that hI spans ∧nRm. To do that it is sufficient to check
that all elementray anti-symmetric tensors ∧ixi, are in the span. We calculate the
linear combination as follows
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∧ni=1xi =
1

n!

∑
σ∈Pn

sgn(σ)⊗ni=1 xσ(i)

=
1

n!

∑
σ∈Pn

sgn(σ)⊗ni=1

m∑
k=1

ekxk,σ(i),

=
1

n!

∑
σ∈Pn

sgn(σ)
∑

I∈Fm,n

⊗ni=1eIi
xIi,σ(i)

=
1

n!

∑
I∈Fm,n

∑
σ∈Pn

sgn(σ)⊗ni=1 eIi
xIi,σ(i)

=
1

n!

∑
I∈Fm,n

(∑
σ∈Pn

sgn(σ)Πn
i=1xIi,σ(i)

)
⊗ni=1 eIi

.

Now we observe that for each J ∈ Fm,n there is a I ∈ Gm,n and a τ ∈ Pn (though
the τ may not be unique) such that J = τ(I).

Show that for such a pairExercise 364 ∑
σ∈Pn

sgn(σ)Πn
i=1xJi,σ(i) = sgn(τ)

∑
σ∈Pn

sgn(σ)Πn
i=1xIi,σ(i).

Therefore we can further group the terms together and obtain

∧ni=1xi =
1

n!

∑
I∈Fm,n

(∑
σ∈Pn

sgn(σ)Πn
i=1xIi,σ(i)

)
⊗ni=1 eIi

=
∑

I∈Gm,n

1

n!

(∑
σ∈Pn

sgn(σ)Πn
i=1xIi,σ(i)

)
1

I!

∑
τ∈Pn

sgn(τ)⊗ni=1 eIi

=
∑

I∈Gm,n

(
1

I!

∑
σ∈Pn

sgn(σ)Πn
i=1xIi,σ(i)

)
∧ni=1 eIi

=
∑

I∈Hm,n

(∑
σ∈Pn

sgn(σ)Πn
i=1xIi,σ(i)

)
∧ni=1 eIi

,

which proves our claim.

Therefore dim(∧nRm) is the cardinality of the set Hm,n which gives easily

dim(∧nRm) =

(
m

n

)
.
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In particular ∧nRm = {0} if n > m, and dim(∧mRm) = 1. Also note that
dim(∧nRm) = dim(∧m−nRm).

Let A be an n× n matrix. Its determinant is defined to be 110Determinant

det(A) =
∑
σ∈Pn

sgn(σ)Πn
i=1Ai,σ(i).

Let X and Y be two m×n matrices. We will use the notation Xi to denote column
i of X.

Show thatExercise 365

(∧ni=1Xi)
T (∧ni=1Yi) =

1

n!
det(XTY).

Show thatExercise 366

| det(XTY)| ≤
√

det(XTX) det(YTY).

At this stage it is good to do the following exercise from Bhatia. Note that dim(⊗3R3) =Example 8
27, dim(∨3R3) = 10 and dim(∧3R3) = 1. Find an element of (∨3R3 ⊕ ∧3R3)⊥. A
brute force approach that will work is to pick a random vector in ⊗3R3 and orthog-
onalize it against all suitable gI and hI . A simpler way is to proceed as follows.
Observe that every vector in ∧3R3 is a linear multiple of ∧3

i=1ei. Motivated by this
consider the vector e1 ⊗ e1 ⊗ e2 − e1 ⊗ e2 ⊗ e1. Clearly it is orthogonal to ∧3R3.
In ∨3R3 it is clearly orthogonal to all gI except possibly for g(1,1,2). A quick check
shows that it is orthogonal to this one too.

As in the symmetric case calculations become easier to do if we can define a fully
associative wedge product (also called the Grassmann product). Like before we need
to find the orthogonal projector P∧, onto ∧nRm. We define it on the canonical basis
vectors as follows

P∧(⊗ni=1eIi
) = ∧ni=1eIi

, for I ∈ Fm,n.

We need to check if this is indeed an orthogonal projector. We begin by checking it
is idempotent. It is sufficient to check this on hI for I ∈ Hm,n.

P∧hI =
1√
n!

∑
σ∈Pn

sgn(σ)P∧
(
⊗ni=1eIσ(i)

)
=

1√
n!

∑
σ∈Pn

sgn(σ) ∧ni=1 eIσ(i)

= hI .
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Finally we check if x−P∧x is perpendicular to P∧x for all vectors x. It is sufficient
to check ⊗ieIi

−P∧(⊗ieIi
) is perpendicular to all hJ . It is clear that if σ(I) ∈ Gm,n,

but σ(I) /∈ Hm,n, for some permutation σ, then clearly the orthogonality condition
holds. So we only need to check when I ∈ Hm,n. Thus for I,J ∈ Hm,n we must
compute (∑

σ∈Pn

sgn(σ)⊗ni=1 eJσ(i)

)T
(⊗ni=1eIi

− P∧(⊗ni=1eIi
)).

Clearly if I 6= J the above inner product is zero. Thus we only need to check when
I = J ∈ Hm,n.(∑

σ∈Pn

sgn(σ)⊗ni=1 eIσ(i)

)T
(⊗ni=1eIi

− P∧(⊗ni=1eIi
)) = 1− n!

n!
,

which confirms that P∧ is the orthogonal projector onto ∧nRm.

Next, for I ∈ Hm,n1 and J ∈ Hm,n2 we compute the anti-symmetric tensor

P∧

 1

n1!

∑
σ∈Pn1

sgn(σ)⊗n1
i=1 eIσ(i)

⊗

 1

n2!

∑
σ∈Pn2

sgn(σ)⊗n2
i=1 eJσ(i)


=

1

n1!n2!

∑
σ∈Pn1
τ∈Pn2

sgn(σ) sgn(τ)P∧
(
(⊗n1

i=1eIσ(i)
)⊗ (⊗n2

i=1eJσ(i)
)
)

=
1

n1!n2!

∑
σ∈Pn1
τ∈Pn2

sgn(σ) sgn(τ)(∧i∈(σ(I),τ(J ))ei)

=
n1!n2!

n1!n2!
∧i∈(I,J ) ei.

Therefore we can extend the definition of wedge product to anti-symmetric tensors
by first defining it on the canonical basis for ∧nRm:

(∧n1
i=1eIi

) ∧ (∧n2
i=1eJi

) = ∧n1+n2
i=1 e(I,J )i .

We then extend it by linearity in each argument. Therefore for x ∈ ∧n1Rm and
y ∈ ∧n2Rm, since

x =
∑

I∈Hm,n1

xI ∧n1
i=1 eIi

, and y =
∑

I∈Hm,n2

yI ∧n2
i=1 eIi

,

we have
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x ∧ y = P∧(x⊗ y) =
∑

I∈Hm,n1
J∈Hm,n2

xIyJ ∧n1+n2
i=1 e(I,J )i .

Note that many terms on the right-hand side can be zero. Furthemore observe that
for I ∈ Hm,n1 and J ∈ Hm,n2

(∧n1
i=1eIi

) ∧ (∧n2
i=1eJi

) = (−1)n1n2 (∧n2
i=1eJi

) ∧ (∧n1
i=1eIi

).

Show that for anti-symmetric tensors x, y and z and scalar αExercise 367

• (x + αy) ∧ z = x ∧ z + αy ∧ z,

• (x ∧ y) ∧ z = x ∧ (y ∧ z),

• x ∧ y = (−1)n1n2 y ∧ x, if x ∈ ∧n1Rm and y ∈ ∧n2Rm.

Show that if vi ∈ Rm then ∧ni=1vi = 0 iff the vi are linearly dependent.Exercise 368
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6.7 Anti-symmetric tensor powers


