Home Work 1.

Two pages.

Reading assignments don't have to be turned in. You can choose to do the problems in this homework or the exercises in sections 2.1-2.5 of my notes posted on the class web-site.

1. Reading assignment. Read chapters 1,2 and 3 of Dym's book.
2. Reading assignment. Read chapter 2 of the notes posted on the class web-site.
3. Find a way to represent complex numbers as 2×2 real matrices, such that arithmetic operations $(+,-, \times$, and \div) on complex numbers becomes equivalent to arithmetic operations on their matrix representations instead. That is, if $T(z)$ is the 2×2 real matrix representing the complex number z, then

$$
\begin{aligned}
T\left(z_{1}+z_{2}\right) & =T\left(z_{1}\right)+T\left(z_{2}\right) \\
T\left(z_{1}-z_{2}\right) & =T\left(z_{1}\right)-T\left(z_{2}\right) \\
T\left(z_{1} z_{2}\right) & =T\left(z_{1}\right) T\left(z_{2}\right) \\
T\left(z_{1} / z_{2}\right) & =\left(T\left(z_{2}\right)\right)^{-1} T\left(z_{1}\right),
\end{aligned}
$$

for all complex numbers z_{1} and z_{2}. Hint: The entries of $T(z)$ will depend on the real and imaginary parts of z. Look at the expression for the product of two complex numbers and two 2×2 matrices.
4. A. Show that the exchange operator

$$
E_{i j} x=E_{i j}\left(\begin{array}{c}
\vdots \\
x_{i} \\
\vdots \\
x_{j} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
x_{j} \\
\vdots \\
x_{i} \\
\vdots
\end{array}\right)
$$

which exchanges the i-th and j-th components of a vector leaving all others untouched, is a linear operator
B. Find a matrix representation for $E_{i j}$.
C. Show that the permutation operator

$$
P_{\sigma_{1} \sigma_{2} \cdots \sigma_{n}} x=\left(\begin{array}{c}
x_{\sigma_{1}} \\
x_{\sigma_{2}} \\
\vdots \\
x_{\sigma_{n}}
\end{array}\right), \quad 1 \leq \sigma_{i} \leq n, \quad \sigma_{i} \neq \sigma_{j} \text { if } i \neq j
$$

is a linear operator and find its matrix representation.
D. How many distinct exchange matrices are there of size n ?
E. How many distinct permutation matrices are there of size n ?
F. Show that every $n \times n$ permutation matrix can be written as the product of at most n exchange matrices.
5. Let P_{n} denote the set of all poynomials of degree at most n with real coefficients.
A. Find a way to represent any polynomial in P_{n} as a real column matrix with $n+1$ elements. That is, find an invertible map T from P_{n} to \mathcal{R}^{n} such that $T\left(p_{1}+p_{2}\right)=T\left(p_{1}\right)+T\left(p_{2}\right)$, and $T\left(\alpha p_{1}\right)=\alpha T\left(p_{1}\right)$, for any two polynomials p_{1} and p_{2} from P_{n}, and any scalar α.
B. Can you find a representation that is different from the one in the previous part? There are infinitely many.
C. Find an $(n+1) \times(n+1)$ matrix D, such that $D T(p)=T\left(p^{\prime}\right)$, for any polynomial p in P_{n}, where p^{\prime} denotes the derivative of p.
D. Is the matrix D invertible? Left-invertible? Right-invertible?

