Home Work 2

Due on October 6, 2008

Reading assignments don't have to be turned in.

1. Reading assignment. Read chapters 1,2 and 3 of Dym's book.
2. Reading assignment. Finish reading chapter 2 of the notes posted on the class web-site.
3. Reading assignment. Read chapter 3 of the notes posted on the class web-site.
4. Suppose $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, and that $\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b$. Show that the gradient of ϕ is given by $\nabla \phi(x)=\frac{1}{2}\left(A^{T}+A\right) x-b$.
5. Let $A=\left(\begin{array}{lll}1 / 3 & 1 / 3 & 1 / 3\end{array}\right)^{T}$. Think of A as an operator from \mathbb{R}^{1} to \mathbb{R}^{3} via matrix-vector multiplication. Show that the operator is one-to-one. Find two linear left-inverses for A. Find a left-inverse for A that is not linear.
6. Find all matrices X that satisfy the equation

$$
A X B^{T}=C
$$

in terms of the $L U$ factorizations of A and B. When are there no solutions?
7. Let U_{1} and U_{2} be two upper-triangular matrices. Let Z be an $m \times n$ matrix. Let X be an unknown matrix that satisfies the equation

$$
U_{1} X+X U_{2}=Z
$$

A. Give an algorithm to find X in $O(m n(m+n)$) flops (floating-point operations).
B. Find conditions on U_{1} and U_{2} which guarantee the existence of a unique solution X.
C. Give a non-trivial example $\left(U_{1} \neq 0, U_{2} \neq 0, X \neq 0\right)$ where those conditions are not satisfied and

$$
U_{1} X+X U_{2}=0
$$

