Home Work 3

Due on October 20, 2008
Two pages

Reading assignments don't have to be turned in.

1. Reading assignment. Read chapters $7,8,9,10$ and 11 of Dym's book. The lectures in the next few weeks will concern these chapters.
2. Reading assignment. Read chapters 2,3 and 4 of the class notes posted on the class web-site. Some typos have been fixed and new material has been added, so be sure to download the updated notes.
3. Show (in complete detail) that X is a full column rank matrix if and only if $X^{T} X$ is non-singular (invertible). Assume X is a real matrix.
4. Show how to construct at least one left-inverse for a full column rank matrix, and one right-inverse for a full row rank matrix.
5. If X and Y are full column rank matrices of rank p, show that the rank of $X Y^{T}$ is equal to p.
6. Show that if A is a rank p matrix then you can find two full column rank matrices X and Y of rank p such that $A=X Y^{T}$.
7. If X and Y are two full column rank matrices of rank p, find all matrices A for which $R(X)=R(A)$ and $R\left(A^{T}\right)=R(Y)$.
8. Let X and Y be two full column rank real matrices. What are the conditions (if any) on X and Y such that there exsists a real matrix A such that $A X=Y$ and $Y^{T} A=X^{T}$? Find all such A when the conditions are satisfied.
9. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function that satisfies the following conditions

- $f(v) \geq 0$ for all $v \in \mathbb{R}^{n}$
$-\quad f(v)=0$ iff $v=0$
- $f(\alpha v)=|\alpha| f(v)$ for all $\alpha \in \mathbb{R}$ and all $v \in \mathbb{R}^{n}$
- The set $\{v: f(v) \leq 1\}$ is convex
then f defines a norm on \mathbb{R}^{n}.

10 . Show that for $p \geq 1$ and $p^{-1}+q^{-1}=1$,

$$
\|x\|_{p}=\max _{y \neq 0} \frac{\left|y^{T} x\right|}{\|y\|_{q}}, \quad x \in \mathbb{R}^{n}
$$

Hint: You can use Hölder's inequality for part of the proof.
11. Show that the Frobenius norm is sub-multiplicative. Hint: See Exercise 122 of the notes (October 13, 2008).
12. Let $\left\|A^{-1}\right\|\|E\|<1$ for some induced matrix norm. Show that $A+E$ is nonsingular and that

$$
\frac{\left\|(A+E)^{-1}-A^{-1}\right\|}{\left\|A^{-1}\right\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|E\|}{\|A\|} \frac{1}{1-\left\|A^{-1}\right\|\|E\|} .
$$

Hint: See Exercise 151 of the notes (October 13, 2008).
13. Show that $\|A\|_{2}^{2} \leq\|A\|_{1}\|A\|_{\infty}$. Hint: See Exercise 125 of the notes (October 13, 2008).

