Home Work 4

Two pages.
Due on October 30, 2008

Reading assignments don't have to be turned in.

1. Reading assignment. Read chapters 7, 8, 9, 10 and 11 of Dym's book.
2. Reading assignment. In the next few lectures we will cover chapters 4 and 6 in Dym's book.
3. We say that a sequence $x^{(1)}, x^{(2)}, x^{(3)}, \ldots$, of n-dimensional vectors converges to x if

$$
\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|=0
$$

Show that in $\mathbb{R}^{n}, x^{(i)} \rightarrow x$ if and only if $x_{k}^{(i)} \rightarrow x_{k}$ for k from 1 to n.
4. Let $\|\cdot\|$ be a vector norm on \mathbb{R}^{m} and assume $A \in \mathbb{R}^{m \times n}$. Show that if $\operatorname{rank}(A)=$ n, then $\|x\|_{A} \equiv\|A x\|$ is a vector norm on \mathbb{R}^{n}.
5. Prove or disprove

$$
v \in \mathbb{R}^{n} \Rightarrow\|v\|_{1}\|v\|_{\infty} \leq \frac{1+\sqrt{n}}{2}\|v\|_{2}^{2} .
$$

6. Let B be any submatrix of A. Show that $\|B\|_{p} \leq\|A\|_{p}$.
7. Show that if $s \in \mathbb{R}^{n}$ and $s \neq 0$, and $E \in \mathbb{R}^{n \times n}$, then

$$
\left\|E\left(I-\frac{s s^{T}}{s^{T} s}\right)\right\|_{F}^{2}=\|E\|_{F}^{2}-\frac{\|E s\|_{2}^{2}}{s^{T} s} .
$$

8. Suppose $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$. Show that if $E=u v^{T}$ then $\|E\|_{F}=\|E\|_{2}=$ $\|u\|_{2}\|v\|_{2}$ and that $\|E\|_{\infty}=\|u\|_{\infty}\|v\|_{1}$.
9. Suppose $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$, and $0 \neq s \in \mathbb{R}^{n}$. Show that $E=(y-A s) s^{T} / s^{T} s$ has the smallest 2-norm of all $m \times n$ matrices E that satisfy $(A+E) s=y$.
10. Let X and Y be two full column rank matrices. We know from the last homework that there are many matrices A which satisfy the pair of equations

$$
\begin{aligned}
A X & =Y \\
Y^{T} A & =X^{T} .
\end{aligned}
$$

From the set of all such matrices A find the one that has the least Frobenius norm.
11. Let M be a real symmetric $n \times n$ matrix, and let L_{M} be a linear operator from $\mathbb{R}^{n \times n}$ to $\mathbb{R}^{n \times n}$, defined by the equation

$$
L_{M}(A)=\frac{A^{T} M+M A}{2} .
$$

Define the matrix (or operator) 2-norm of L_{M} (denoted by $\left\|L_{M}\right\|_{2}$) by

$$
\left\|L_{M}\right\|_{2}=\max _{\|A\|_{F}=1}\left\|L_{M}(A)\right\|_{F} .
$$

Show that

$$
\left\|L_{M}\right\|_{2} \leq\|M\|_{F}
$$

Extra credit: Show that $\left\|L_{M}\right\|_{2}=\|M\|_{2}$.

