Home Work 4

Two pages. Due on October 30, 2008

Reading assignments don't have to be turned in.

- 1. Reading assignment. Read chapters 7, 8, 9, 10 and 11 of Dym's book.
- 2. **Reading assignment.** In the next few lectures we will cover chapters 4 and 6 in Dym's book.
- 3. We say that a sequence $x^{(1)}, x^{(2)}, x^{(3)}, \ldots$, of *n*-dimensional vectors **converges** to x if

$$\lim_{k \to \infty} \|x^{(k)} - x\| = 0.$$

Show that in \mathbb{R}^n , $x^{(i)} \to x$ if and only if $x_k^{(i)} \to x_k$ for k from 1 to n.

- 4. Let $\|\cdot\|$ be a vector norm on \mathbb{R}^m and assume $A \in \mathbb{R}^{m \times n}$. Show that if rank(A) = n, then $\|x\|_A \equiv \|Ax\|$ is a vector norm on \mathbb{R}^n .
- 5. Prove or disprove

$$v \in \mathbb{R}^n \Rightarrow \|v\|_1 \|v\|_\infty \le \frac{1+\sqrt{n}}{2} \|v\|_2^2.$$

- 6. Let B be any submatrix of A. Show that $||B||_p \leq ||A||_p$.
- 7. Show that if $s \in \mathbb{R}^n$ and $s \neq 0$, and $E \in \mathbb{R}^{n \times n}$, then

$$\left\| E\left(I - \frac{ss^{T}}{s^{T}s}\right) \right\|_{F}^{2} = \|E\|_{F}^{2} - \frac{\|Es\|_{2}^{2}}{s^{T}s}$$

- 8. Suppose $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Show that if $E = uv^T$ then $||E||_F = ||E||_2 = ||u||_2 ||v||_2$ and that $||E||_{\infty} = ||u||_{\infty} ||v||_1$.
- 9. Suppose $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, and $0 \neq s \in \mathbb{R}^n$. Show that $E = (y As)s^T/s^Ts$ has the smallest 2-norm of all $m \times n$ matrices E that satisfy (A + E)s = y.
- 10. Let X and Y be two full column rank matrices. We know from the last homework that there are many matrices A which satisfy the pair of equations

$$AX = Y,$$
$$Y^T A = X^T$$

From the set of all such matrices A find the one that has the *least* Frobenius norm.

11. Let M be a real symmetric $n \times n$ matrix, and let L_M be a linear operator from $\mathbb{R}^{n \times n}$ to $\mathbb{R}^{n \times n}$, defined by the equation

$$L_M(A) = \frac{A^T M + M A}{2}.$$

Define the matrix (or operator) 2-norm of L_M (denoted by $||L_M||_2$) by

$$||L_M||_2 = \max_{||A||_F=1} ||L_M(A)||_F.$$

Show that

 $\|L_M\|_2 \le \|M\|_F.$

Extra credit: Show that $||L_M||_2 = ||M||_2$.