Home Work 5

Two pages.
Due on November 6, 2008

Reading assignments don't have to be turned in.

1. Reading assignment. Read chapters 7, 8, 9, 10 and 11 of Dym's book.
2. Reading assignment. In the next few lectures we will cover chapters 4 and 6 in Dym's book.
3. For any $m \times n$ real matrix A show that
A. $\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{n}\|A\|_{2}$ without using the SVD,
B. $\max _{i, j}\left|a_{i, j}\right| \leq\|A\|_{2} \leq \sqrt{m n} \max _{i, j}\left|a_{i, j}\right|$,
C. $\frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}$,
D. $\frac{1}{\sqrt{m}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1}$.
4. Establish the following statments:
A. A triangular orthogonal matrix is diagonal.
B. Permutation matrices are orthogonal.
C. The product of two orthogonal matrices is orthogonal.
5. Show that if $Q_{1}+i Q_{2}$ is unitary then the real matrix

$$
Z=\left(\begin{array}{cc}
Q_{1} & -Q_{2} \\
Q_{2} & Q_{1}
\end{array}\right)
$$

is orthogonal.
6. Show that any matrix in $\mathcal{R}^{m \times n}$ is the limit of a sequence of full rank matrices.
7. Show that if A has full column rank then $\left\|A\left(A^{T} A\right)^{-1} A^{T}\right\|_{2}=1$.
8. Let X and Y and be two real full column-rank matrices such that $Y^{T} Y=X^{T} X$. We know from a previous home assignment that there exist real matrices A such that $A X=Y$ and $Y^{T} A=X^{T}$.
A. Show that $\|Y\|_{2}=\|X\|_{2}$.
B. Show that for any such matrix $A,\|A\|_{2} \geq 1$.
C. Find an A such that $\|A\|_{2}=1$.
9. A. Show that the set of skew-symmetric $n \times n$ real matrices is the orthogonal complement of the set of symmetric $n \times n$ real matrices in the vector space $\mathbb{R}^{n \times n}$ using the standard inner-product.
B. Let A be a real square matrix. Show that if $x^{T} A x=0$ for all vectors x, then A is skew-symmetric.
10. Find a matrix P that is not an orthogonal projector that satisfies the condition that $x-P x$ is perpendicular to $P x$ for all x. Hint: Rotate by θ and scale by $1 /(\cos \theta)$.
11. Show that for any matrix M

$$
\|M\|_{2}=\max _{\|A\|_{F}=1}\|M A\|_{F}
$$

where A is allowed to be any (finite) matrix such that $M A$ is well-defined. Hint: Show that $\|M A\|_{F} \leq\|M\|_{2}\|A\|_{F}$.

