Home Work 6

Two pages.
Due on November 13, 2008

Reading assignments don't have to be turned in.

1. Reading assignment. Finish reading chapters 4,5 and 6 in Dym's book.
2. Find the shortest distance between two infinite straight lines in \mathcal{R}^{3}. Note, the lines do not necessarily pass through the origin. Provide the simplest expression possible.
3. A matrix A is said to be normal if $A^{H} A=A A^{H}$. Show that if a triangular matrix is normal, then it is diagonal.
4. Show that if P is an orthogonal projection, then $Q=I-2 P$ is orthogonal.
5. What are the singular values of an orthogonal projection?
6. Find the singular values of the matrix

$$
C=\binom{X}{I}
$$

in terms of the singular values of the matrix X.
7. Find explicit expressions for the singular values of the 2×2 real matrix

$$
A=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

8. Find the singular values of the matrix

$$
B=\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)
$$

in terms of the singular values of the matrix X.
9. Prove the following statement of the CS Decomposition (thin version). Consider the matrix

$$
Q=\binom{Q_{1}}{Q_{2}} \quad Q_{1} \in \mathcal{R}^{m_{1} \times n}, Q_{2} \in \mathcal{R}^{m_{2} \times n}
$$

where $m_{1} \geq n$ and $m_{2} \geq n$. If the columns of Q are orthonormal, then there exist orthogonal matrices $U_{1} \in \mathcal{R}^{m_{1} \times m_{1}}, U_{2} \in \mathcal{R}^{m_{2} \times m_{2}}$, and $V_{1} \in \mathcal{R}^{n \times n}$ such that

$$
\left(\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right)^{T}\binom{Q_{1}}{Q_{2}} V_{1}=\binom{C}{S}
$$

where

$$
\begin{aligned}
C & =\operatorname{diag}\left(\cos \left(\theta_{1}\right), \ldots, \cos \left(\theta_{n}\right)\right) \\
S & =\operatorname{diag}\left(\sin \left(\theta_{1}\right), \ldots, \sin \left(\theta_{n}\right)\right),
\end{aligned}
$$

and

$$
0 \leq \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{n} \leq \frac{\pi}{2}
$$

