Home Work 7

Two pages
Due on November 20, 2008

Reading assignments don't have to be turned in.

1. Reading assignment. Finish reading chapters 4,5 and 6 in Dym's book.
2. Reading assignment. Read the proof of the Jordan decomposition theorem in the class notes. Make sure you can supply the missing details.
3. Verify that if X diagonalizes

$$
\left(\begin{array}{cc}
1+\epsilon & 1 \\
0 & 1-\epsilon
\end{array}\right), \quad 0<\epsilon<0.5
$$

then $\|X\|_{1}\left\|X^{-1}\right\|_{1}=\kappa_{1}(X) \geq 1 /(2 \epsilon)$.
4. Show that there is no non-singular X such that

$$
X\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) X^{-1}
$$

is diagonal.
5. Let $L_{A, B}$ be the linear operator

$$
L_{A, B}(X)=A X B^{H}
$$

where A, B and X are matrices of suitable sizes. Find the eigenvalues of $L_{A, B}$ in terms of the eigenvalues of A and B.
6. Let $L_{A, B}$ be the linear operator

$$
L_{A, B}(X)=A X+X B^{H}
$$

where A, B and X are matrices of suitable sizes. Find the eigenvalues of $L_{A, B}$ in terms of the eigenvalues of A and B.
7. Show that the eigenvalues of $A B$ are the same as the eigenvalues of $B A$ except for some eigenvalues at 0 . This is true even if A and B are not square matrices. Hint: This is a bit tricky. A famous short proof is available in the text book.

