Reading assignments don’t have to be turned in.

1. **Reading assignment.** Finish reading chapters 4, 5 and 6 in Dym’s book.

2. **Reading assignment.** Read the proof of the Jordan decomposition theorem in the class notes. Make sure you can supply the missing details.

3. Verify that if X diagonalizes
 \[
 \begin{pmatrix}
 1 + \epsilon & 1 \\
 0 & 1 - \epsilon
 \end{pmatrix},
 \quad
 0 < \epsilon < 0.5,
 \]
 then \(\|X\|_1 \|X^{-1}\|_1 = \kappa_1(X) \geq 1/(2\epsilon) \).

4. Show that there is no non-singular X such that
 \[
 X \begin{pmatrix}
 \lambda & 1 \\
 0 & \lambda
 \end{pmatrix} X^{-1}
 \]
 is diagonal.

5. Let $L_{A,B}$ be the linear operator
 \[
 L_{A,B}(X) = AXB^H,
 \]
 where A, B and X are matrices of suitable sizes. Find the eigenvalues of $L_{A,B}$ in terms of the eigenvalues of A and B.

6. Let $L_{A,B}$ be the linear operator
 \[
 L_{A,B}(X) = AX + XB^H,
 \]
 where A, B and X are matrices of suitable sizes. Find the eigenvalues of $L_{A,B}$ in terms of the eigenvalues of A and B.

7. Show that the eigenvalues of AB are the same as the eigenvalues of BA except for some eigenvalues at 0. This is true even if A and B are not square matrices. **Hint:** This is a bit tricky. A famous short proof is available in the text book.