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Final Exam Solution Key: 17 March 2008 
 

(1) Thermodynamics and Stat Mech 
 (a) U = -p⋅E  where p points from – to + charge and has magnitude qd , q = e (one electron)  and d = a/2.  

So for E as shown along the x axis, the potential energy of the two states is U1 = -p1⋅E = ea/2, and 
(since p1 and E are antiparallel) and U2 = -p2⋅E = -ea/2 (since p2 and E are parallel) 
    By assuming Boltzmann statistics, we can thus write probability of occupancy of the both dipole 

states  as 
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∑  is the normalization constant. 

So: Dipole (1) f1 = C
( )/ 21U k T eaE k TB Be Ce− −= ;    Dipole (2): f2 = C

( )/ 22U k T eaE k TB Be Ce− =  
 
C = {exp[eaE/(2kBT)] + exp[-eaE/(2kBT)]}-1 

(b) Substitution of a = 3x10-10 m, E = 1x108 V/m, and T = 300 K yields eaE/(2kBT) = 0.58, so 

      C = [exp(0.29) + exp(-0.29)]-1 = [1.786 +0.56 ]-1 = 0.426, and we get: f1 =  0.24, f2 =  0.76                    
. 

(c) From statistics, < p > = i ip f
i
∑ ⋅ = 0.24 (ea/2)(-x)+0.76 (ea/2)(x)=0.52(ea/2)x⋅ ⋅  

(d) Substitution: < p > = 1.25x10-29 x  [Cb-m], and P  = ρ < p > = 1.25x10-7 x  Cb/m2 since ρ = 1022/m3 
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(2) Elasticity 
(a) eyy and ezz  are identically zero from the definition of “clamped” 
(b) To derive the stress terms, we first write the form of the stiffness matrix from the clues given for a 

cubic solid: 
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By inspection, we see that 11 12 12 11xx xx yy zz xxP C e C e C e C e= + + + =   

12 12 11 12zz xx yy zz xxP C e C e C e C e= + + =  

(c)Assuming
2 11 2 11 2

11 121 10 , 1.66 10 / , 0.64 10 /xxe C N m C N m−= × = × = × we get 
9 2 9 21.6 10 / , 0.64 10 /xx zzP N m P N m= × = ×  
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(d) If replaced by an isotropic homogeneous solid, we still have 12 nonzero stiffness matrix elements.  
But there now only two independent ones. 

(e) if clamps are removed, Pxx = Yexx where Y is Young’s modulus.  ezz = eyy = σ exx = σ Pxx /Y. 
 
(3) Lattice Waves  
(a) Two types of elastic waves can propagate: (1) compressional, and (2) shear.  With compessional, the 

polarization is longitudinal (deformation along propagation direction).  With shear, the polarization is 
transverse (deformation perpendicular to propagation direction).  

(b) The compressional always has the higher velocity, and is so much higher than the analogous (sound) 
waves in fluids because solids have so much higher stiffness than fluids. 

(c) By atomic theory, there are four total wave types: (1) longitudinal acoustic (corresponding to 
compressional elastic), (2) transverse acoustic (corresponding to shear elastic), (3) longitudinal 
optical, and (4) transverse optical.  By atomic theory, there are three acoustical lattice waves.  And 
there are 3p-3 optical lattice waves, where p is the number of atoms per primitive unit cell.  For the 
given solid with  p = 5, we get twelve optical waves and fifteen total (lattice) waves. We expect one 
longitudinal wave per atom per primitive cell.  So of the fifteen total, five are polarized longitudinal 
and ten are polarized transverse. 

(d) By equipartition, there is a contribution of (1/2)kBT per “degree-of-freedom”.  Each longitudinal 
wave provides two such degrees-of-freedom, one for kinetic energy and one for potential.  So each 
longitudinal wave provides kBT of energy.  Each transverse wave has the same contribution, kBT.  So 
by simple multiplication, we get 15kBT of energy for all the waves, and 15NCkBT energy for the 
entire solid where NC is the number of primitive unit cells in the solid.  {Another acceptable way to 
work the problem is by considering the atoms as energy bearers.  Each atom provides 6 degrees of 
freedom (3 from potential energy, 3 from kinetic).  So each atom provides 3kBT of total energy.  So 
for 5 atoms per primitive cell, we get 15kBT per primitive cell, or 15NCkBT total energy}.  The 
resulting heat capacity of the solid from all lattice waves is just CV ≈dU/dT = 15NCkB. 

(e) Silicon has the diamond structure and GaAs the zincblende.  So both have one longitudinal acoustic 
wave, two transverse acoustic, one longitudinal optic, and two transverse optics (six total waves).  
Aluminum is fcc, so only has one longitudinal acoustic and two transverse acoustic (three total).  
GaAs should have the strongest interaction with IR radiation because its optical lattice waves are 
polar in nature, Ga and As being partially ionic, so interact strongly with electromagnetic fields. 

 
(4) Sommerfeld-Fermi Model.   

 (a) To get the density of states, we note: #states/length in k space = L/2π.   So, ( ) 2
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−= =  which diverges as U → 0 .  But this is an integrable singularity so it 

should not cause problems in statistical averages, which are always integrals (or summations) 
(b) In one dimension, the total number of electrons as a function of Fermi Energy is 
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So by substitution of D1D from (a)
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So the line density is  
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(c) If ρ1D = 1x106 cm-1 (1x108 m-1), then UF0 = 2.25x10-21 J = 0.014 eV.  The Fermi velocity is vF = 
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(2UF0/m*)1/2 = 2.7x105 m/s. 
(d) The mean kinetic energy is given by: 
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1 0

22 * D F
Lm N U

π
−⋅ = , so that <U> = (1/3)N1DUF0  . 

(e) If UF0,max is 1.0 eV, we use (b) again to find a max line density:  ρ1D,max = 8.4x108 m-1 or 8.4x106 cm-1. 

(5) Bloch Model 
(a) For two electrons per unit cell, we would expect insulating behavior at low temperature since the 

n=1 band would be just full, and there is gap separating it from the n = 2 band. 
(b) For three electrons per unit cell, we would expect metallic behavior with the n = 1 band full and 

the n = 2 band half-full.  The Fermi level would lie approximately midway up the n = 2 band.   
(c) The group velocity can always be written 1( / )gv dU dk−=  in one dimension, or more generally, 

1( )g kv U−= ∇  in three dimensions ? 

(d) The effective mass at any minimax point is defined by 2 2 2 1* ( / )m d U dk −=  .  For the three bands 
shown, the effective mass of n = 1 is positive, and the effective masses of n = 2 and n = 3 are negative.  
Because it clearly has the smallest curvature (i.e., second derivative), the n = 3 band has the largest 
magnitude of effective mass at k = 0. 

(e) The Bloch wavefunction is jk r
n,k n,kψ (r)=φ (r)e ⋅ where k  is the crystal wavevector, φn,k is the cell-

periodic (or atomic) function, and n is the band index.  The translation property 

is jk Rψ(r+R)=e ψ(r)⋅ where R is any primitive lattice vector. 
 
(6) Semiconductor Band Statistics 
(a) GaN has a spherical conduction band so the electronic density-of-states is given by D(U), so with 

spin degeneracy included the density of states is 2⋅V(m*)3/2 U1/2 /[(2)1/2 π2 3] (no partial credit) 
(b) md

* is the density-of-states mass, which is 0.21 me for GaN since the conduction band is assumed 
spherical.  M is the equivalent number of electron “valleys” (or “pockets”), which is 1 for GaN. 

 Evaluating the expression, we get NC(300 K) = 2.4x1024 m-3 = 2.4x1018 cm-3. 
(c) The hydogenic model results in a proton and electron embedded in the otherwise perfect crystal lattice 

of the host.  Hence, we can use the (vacuum) hydrogen energy levels by making the substitution me → 
m* and ε → εrε0 , so that φB = -m*e4/[8(hεrε0)2] = -3.07x10-21 J = -0.019 eV 

(d) When the Fermi level lies at the donor energy, UF – UC = φB , so that n = NC exp(-φB/kBT) = 1.15x1024 
m-3 = 1.15x1018 cm-3. 
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(7) Bonus Problem: Crystals 
(a) Yes, the elongated crystal structure is a tetragonal Bravais lattice, the coordination number is two 

if c < a, and is four if c > a.  The primitive unit cell has volume abc = a2c. 
(b)With the additional edge atoms, we not longer have a Bravais lattice.  To prove this, consider the 

configuration seen from the two atoms along the vectors shown in the (B) below.   Clearly, the 
configuration seen from one atom is not the same as the configuration seen from the other atom. 

(c) By eliminating the four atoms along opposite edges as shown in (C), the crystal structure 
becomes a Bravais lattice once again, this time an orthorhombic lattice having a coordination 
number of two (no matter what the c/a ratio), and a primitive unit cell volume (a/2)bc = a2c/2. 

(d) But if the blue atoms in (C) are not the same as the gray atoms, we no longer have a Bravais 
lattice since space does not look the same looking from a gray atom towards a blue atom as it does 
from a blue atom towards a gray atom. 
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This figure or something similar should be included if the student is to receive full credit. 


