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(1) Inspecting the Table 2.2 in Kittel, and other sources (see for example, 
http://www.physicsofmatter.com/Edition2/Download/Tables/pdf/Tab07.pdf): 

(a) lowest compressibility,    (a) highest compressibility 

diamond form of C, κ = 2.26 x10-12 m2/n ;         Cs ,  κ =  ~500 x10-12 m2/n (but barely a solid 

       at 300 K, Tmelt = 301.6 K !) 
 (b) lowest expansivity   (b) highest expansivity 

W , α = 4.5 x10-6 K-1 ;      Cd and Zn , α ≈ 30 x10-6 K-1 

(from above Website, Table 7.7:  α is linear expansivity; volume expansivity, β =3 α) 
(c) lowest thermal conductivity  (c) highest thermal conductivity 

       S,  Κ = 0.15 W/K-m ;      diamond form of C, K=700-1700 W/K-m 

 (d) lowest electrical conductivity  (d) highest electrical conductivity 

      S,  σ = 5 x10-16 S/m            Ag,   σ  = 6.2x107 S/m 
 

(2) The ideal gas and block of copper, each of volume 
3

0.5 m  @ 300K and 1 atm.  Pressure is  
increased to 5 atm isothermally. 

(a) Work done in each process is given by 
2

1

V

V

PdV!"  where 
1
V  is the volume at 1P atm=  and 

2
V  is the volume at 5P atm= .  It is helpful to draw a P-V diagram as shown in the figure 
below.  In general, P decreases with increasing V for a gas or solid, but it decreases much 
slower for a gas because it is so much more compressible.  Therefore, the change in volume 
ΔV and work done is greater for the gas.  Graphically, the work done is the area under the P-
V curve, as shown below. 

(b) • For the ideal gas, PV nRT=  
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         But all ideal gases have the same molal density,
3

22.41 m kilomole! =  

So,
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• For copper, we know compressibility 
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.  As in most solids, we 

can assume this κ is constant over small pressure changes (we will see how small when we 
study elasticity theory).  So we can integrate,  
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(c) •  volume change for ideal gas 
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  • volume change for copper ( )2 1 2 11 1
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(3) (a) since the volume is fixed and the temperature is rising, we expect the pressure must 

rise.  To calculate this, we take advantage of the fact that V is an exact differential in T and 
P.  So dV = ∂V/∂T|P dT + ∂V/∂P|T dP = 0 because of constant volume constraint.  So we get 

dP = 
T

P

PV

TV

|/

|/

!!

!!" dT =(β/κ)dT.  And if β and κ are assumed constant with respect to 

temperature (not a bad approximation, particularly over a 100 K excursion in temperature 
around 300 K), then by integration ΔP = (β/κ) ΔT.   So for the copper, we get (in MKSA 
units) ΔP = (55x10-6/0.7x10-11)*100 =7.9x108 N/m2 ≈ 7.9x103 Atm.  For the Si we get ΔP = 
(8.4x10-6/1.0x1011)*100  = 8.4x107 N/m2 ≈ 840 Atm 
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The P-V description for Problem 2 
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(b) Because of the constant volume, no work is done and the change in energy of the cubes is 
all by heat, making the heat a total differential.  This allows us to obtain the heat input by 
integrating the specific heat capacity C’V or ΔQ = M CV’ ΔT where M is the mass of each 
cube.  The densities of Cu and Si are (from Kittel’s material Table 1.4) 8.93x103 kg/m3  
and 2.33x103 kg/m3, respectively.  So we find ΔQ = 346 J for Cu and ΔQ = 163 J for Si. 

(c) To keep the hydrostatic pressure constant with the rising temperature we consider the 
exact differential dP = ∂P/∂T|V dT + ∂P/∂V|T dV = 0 = (β/κ) dT + (-1/κ)dV, so that ΔV = 
β ΔT = V0 β ΔT = 5.5*10-3 cm3 for the Cu, and 8.4*10-4 cm3 for the Si. 

 
(4) (a) From basic circuit theory and electrostatics, the electrical potential energy of a capacitor 

is UE = (1/2)CV2 where C = εrε0A/d, A is the area of the plates and d is their separation.  Also 
from electrostatics we know for parallel plates the internal electric field is E = V/d.  So the 
potential energy can be restated as UE = (1/2)εrε0Ad E2 = (1/2)εrε0V E2, and the energy 
density is UE’≡ UE/V = (1/2)εrε0E2 , which has a max value of 4.4x104 J/m3 = 0.044 J/cm3. 
(b) In the notes we defined (χE)ij= (ε0)-1∂Pi/∂Ej which is generally a 2nd rank tensor.  But we 

know that glass is an “LIH” (linear, isotropic, homogeneous) dielectric so this reduces to 
a scalar relationship, PE = ε0 χE E, where from electrostatics χE = εr – 1.  So for glass, we 
get (PE )max = ε0 (4-1) Emax =  1.33x10-3 Cb/m2 = 1.33x10-7 Cb/cm2.  

 
(5) (a) From electrostatics we know the potential energy of a neutral (i.e., equal + and – charge) 

dipole in an electric field is U = -p⋅E  where p is the dipole moment that, by convention, 
points between the – and + charges and has magnitude q⋅d where q is the dipole charge and d 
is the charge separation = a/(2)1/2 according to the Figure below.  So for the E oriented as 
shown between the – and + charges, the potential energy of the four possible interstitial sites 
as enumerated is  

U1 = -p1⋅E = 0 (since p1 and E are perpendicular);     U2 = -p2⋅E =  -eaE/(2)1/2  
U3 = -p3⋅E =  eaE/(2)1/2  ;  U4 = -p4⋅E  =0 (since p4 and E are perpendicular) 
By assuming M-B Statistics, we can thus write probability of occupancy of the ith dipole 

level 
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Exponential factors: Dipole (1):  
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;      Dipole (4) : 
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C = {2 + exp[eaE/(21/2kBT)] + exp[-eaE/(21/2kBT)]}-1 

(b) Substitution of a = 3x10-10 m, E = 1x108 V/m, and T = 300 K yields eaE/(21/2kBT) = 0.821 

so C = (2 + 2.27 + 0.44)-1 = 0.2123, and we get for the probabilities: 

P1 =  0.212                 P2 =  0.482                     P3 =  0.094                          P4 = 0.212 

{Note: P1  + P2  + P3  + P4  = 1.0  as expected for any probability calculation} 


