(1) Inspecting the Table 2.2 in Kittel, and other sources (see for example, http://www.physicsofmatter.com/Edition2/Download/Tables/pdf/Tab07.pdf):
(a) lowest compressibility,
(a) highest compressibility
diamond form of $\mathrm{C}, \kappa=2.26 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{n}$;

> Cs, $\kappa=\sim 500 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{n}$ (but barely a solid at $\left.300 \mathrm{~K}, \mathrm{~T}_{\mathrm{melt}}=301.6 \mathrm{~K}!\right)$
(b) lowest expansivity
(b) highest expansivity
$\mathrm{W}, \alpha=4.5 \times 10^{-6} \mathrm{~K}^{-1}$;
Cd and $\mathrm{Zn}, \alpha \approx 30 \times 10^{-6} \mathrm{~K}^{-1}$
(from above Website, Table 7.7: α is linear expansivity; volume expansivity, $\beta=3 \alpha$)
(c) lowest thermal conductivity
(c) highest thermal conductivity
$\mathrm{S}, \mathrm{K}=0.15 \mathrm{~W} / \mathrm{K}-\mathrm{m}$;
diamond form of $\mathrm{C}, \mathrm{K}=700-1700 \mathrm{~W} / \mathrm{K}-\mathrm{m}$
(d) lowest electrical conductivity
(d) highest electrical conductivity

S, $\sigma=5 \times 10^{-16} \mathrm{~S} / \mathrm{m}$

$$
\mathrm{Ag}, \quad \sigma=6.2 \times 10^{7} \mathrm{~S} / \mathrm{m}
$$

(2) The ideal gas and block of copper, each of volume $0.5 \mathrm{~m}^{3} @ 300 \mathrm{~K}$ and 1 atm . Pressure is increased to 5 atm isothermally.
(a) Work done in each process is given by $-\int_{V_{1}}^{V_{2}} P d V$ where V_{1} is the volume at $P=1 \mathrm{~atm}$ and V_{2} is the volume at $P=5 \mathrm{~atm}$. It is helpful to draw a $P-V$ diagram as shown in the figure below. In general, P decreases with increasing V for a gas or solid, but it decreases much slower for a gas because it is so much more compressible. Therefore, the change in volume $\Delta \mathrm{V}$ and work done is greater for the gas. Graphically, the work done is the area under the P V curve, as shown below.
(b) \cdot For the ideal gas, $P V=n R T$

$$
n=\# \text { mole }, \quad R=\text { gas constant }=\left(8.31 \times 10^{3} \mathrm{~J} / \text { mole }-K\right)
$$

So, $V=\frac{n R T}{P}$ and $d V=\frac{-n R T d P}{P^{2}}$ and $-\int_{V_{1}}^{V_{2}} P d V=\int_{P_{1}}^{P_{2}} \frac{n R T P d P}{P^{2}}=\left.n R T \ln P\right|_{P_{1}} ^{P_{2}}=n R T \ln \left(\frac{P_{2}}{P_{1}}\right)$
But all ideal gases have the same molal density, $v=22.41 \mathrm{~m}^{3} /$ kilomole
So, $n=\frac{0.5 \mathrm{~m}^{3}}{22.41}=0.0223$ kmole .and $-\int P d V=(0.0223)\left(8.31 \times 10^{3}\right)(300) \ln (5 / 1)=8.95 \times 10^{4} \mathrm{~J}$.

- For copper, we know compressibility $\kappa \equiv-\frac{1}{V} \frac{\partial V}{\partial P}=0.7 \times 10^{-6} \mathrm{~atm}^{-1}$. As in most solids, we can assume this κ is constant over small pressure changes (we will see how small when we study elasticity theory). So we can integrate,

The P-V description for Problem 2

$$
\begin{aligned}
-\kappa d P & =\frac{d V}{V} \text { or } \ln \frac{V_{2}}{V_{1}}
\end{aligned}=-\kappa\left(P_{2}-P_{1}\right) \text { or } V_{2}=V_{1} \exp \left[-\kappa\left(P_{2}-P_{1}\right)\right] .
$$

For $\kappa=0.7 \times 10^{-6} / \mathrm{atm}, P_{1}=1 \mathrm{Atm}, P_{2}=5 \mathrm{~atm}$ the term $\exp \left[-\kappa\left(P-P_{1}\right)\right]$ varies slowly around unity, so that $\int_{P_{1}}^{P_{2}} P \kappa V_{1} \exp \left[-\kappa\left(P-P_{1}\right)\right] d P \approx \int_{P_{1}}^{P_{2}} P \kappa V_{1} d P=\kappa V_{1} \frac{P^{2}}{2}$

$$
=\left(0.7 \times 10^{-6}\right)\left(0.5 \mathrm{~m}^{3}\right)\left(\frac{1}{2}\right)\left(5^{2}-1^{2}\right)=4.2 \times 10^{-6} \mathrm{~m}^{3}-\mathrm{Atm}=0.42 J\left(\text { using } 1 \mathrm{Atm} \approx 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)
$$

(c) - volume change for ideal gas

$$
\left|V_{2}-V_{1}\right|=n R T\left(\frac{1}{P_{1}}-\frac{1}{P_{2}}\right)=(0.0223)\left(8.31 \times 10^{3}\right)(300)\left(1-\frac{1}{5}\right)\left(\frac{\mathrm{Atm}}{10^{5} \mathrm{~N} / \mathrm{m}^{2}}\right)=0.44 \mathrm{~m}^{3}
$$

- volume change for copper $\left|V_{2}-V_{1}\right|=V_{1}-V_{1} \exp \left[-K\left(P_{2}-P_{1}\right)\right]$

$$
\begin{aligned}
& K\left(P_{2}-P_{1}\right)\left\langle<1, \exp \left[-K\left(P_{2}-P_{1}\right)\right] \approx 1-K\left(P_{2}-P_{1}\right)\right. \text { and } \\
& \left|V_{2}-V_{1}\right| \approx V_{1} K\left(P_{2}-P_{1}\right)=0.5\left(0.7 \times 10^{-6}\right)(5-1)=1.4 \times 10^{-6} \mathrm{~m}^{3}
\end{aligned}
$$

(3) (a) since the volume is fixed and the temperature is rising, we expect the pressure must rise. To calculate this, we take advantage of the fact that V is an exact differential in T and P . So $\mathrm{dV}=\partial \mathrm{V} /\left.\partial \mathrm{T}\right|_{\mathrm{P}} \mathrm{dT}+\partial \mathrm{V} /\left.\partial \mathrm{P}\right|_{\mathrm{T}} \mathrm{dP}=0$ because of constant volume constraint. So we get $\mathrm{dP}=\frac{-\partial V /\left.\partial T\right|_{P}}{\partial V /\left.\partial P\right|_{T}} \mathrm{dT}=(\beta / \kappa) \mathrm{dT}$. And if β and κ are assumed constant with respect to temperature (not a bad approximation, particularly over a 100 K excursion in temperature around 300 K), then by integration $\Delta \mathrm{P}=(\beta / \kappa) \Delta \mathrm{T}$. So for the copper, we get (in MKSA units) $\Delta \mathrm{P}=\left(55 \times 10^{-6} / 0.7 \times 10^{-11}\right) * 100=7.9 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2} \approx 7.9 \times 10^{3} \mathrm{Atm}$. For the Si we get $\Delta \mathrm{P}=$ $\left(8.4 \times 10^{-6} / 1.0 \times 10^{11}\right) * 100=8.4 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \approx 840 \mathrm{Atm}$
(b) Because of the constant volume, no work is done and the change in energy of the cubes is all by heat, making the heat a total differential. This allows us to obtain the heat input by integrating the specific heat capacity $\mathrm{C}^{\prime}{ }_{\mathrm{v}}$ or $\Delta \mathrm{Q}=\mathrm{M} \mathrm{C}_{\mathrm{V}}{ }^{\prime} \Delta \mathrm{T}$ where M is the mass of each cube. The densities of Cu and Si are (from Kittel's material Table 1.4) $8.93 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $2.33 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, respectively. So we find $\Delta \mathrm{Q}=346 \mathrm{~J}$ for Cu and $\Delta \mathrm{Q}=163 \mathrm{~J}$ for Si.
(c) To keep the hydrostatic pressure constant with the rising temperature we consider the exact differential $\mathrm{dP}=\partial \mathrm{P} /\left.\partial \mathrm{T}\right|_{\mathrm{V}} \mathrm{dT}+\partial \mathrm{P} /\left.\partial \mathrm{V}\right|_{\mathrm{T}} \mathrm{dV}=0=(\beta / \kappa) \mathrm{dT}+(-1 / \kappa) \mathrm{dV}$, so that $\Delta \mathrm{V}=$ $\beta \Delta \mathrm{T}=\mathrm{V}_{0} \beta \Delta \mathrm{~T}=5.5 * 10^{-3} \mathrm{~cm}^{3}$ for the Cu , and $8.4^{*} 10^{-4} \mathrm{~cm}^{3}$ for the Si .
(4) (a) From basic circuit theory and electrostatics, the electrical potential energy of a capacitor is $U_{E}=(1 / 2) C V^{2}$ where $C=\varepsilon_{r} \varepsilon_{0} A / d$, A is the area of the plates and d is their separation. Also from electrostatics we know for parallel plates the internal electric field is $E=V / d$. So the potential energy can be restated as $\mathrm{U}_{\mathrm{E}}=(1 / 2) \varepsilon_{\mathrm{r}} \varepsilon_{0} \mathrm{Ad}^{2}=(1 / 2) \varepsilon_{\mathrm{r}} \varepsilon_{0} \mathrm{~V} \mathrm{E}^{2}$, and the energy density is $\mathrm{U}_{\mathrm{E}}{ }^{\prime} \equiv \mathrm{U}_{\mathrm{E}} / \mathrm{V}=(1 / 2) \varepsilon_{\mathrm{r}} \varepsilon_{0} \mathrm{E}^{2}$, which has a max value of $4.4 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}=0.044 \mathrm{~J} / \mathrm{cm}^{3}$.
(b) In the notes we defined $\left(\chi_{\mathrm{E}}\right)_{\mathrm{ij}}=\left(\varepsilon_{0}\right)^{-1} \partial \mathbf{P}_{\mathbf{i}} / \partial \mathbf{E}_{\mathbf{j}}$ which is generally a $2^{\text {nd }}$ rank tensor. But we know that glass is an "LIH" (linear, isotropic, homogeneous) dielectric so this reduces to a scalar relationship, $\mathrm{P}_{\mathrm{E}}=\varepsilon_{0} \chi_{\mathrm{E}} \mathrm{E}$, where from electrostatics $\chi_{\mathrm{E}}=\varepsilon_{\mathrm{r}}-1$. So for glass, we get $\left(P_{E}\right)_{\max }=\varepsilon_{0}(4-1) \mathrm{E}_{\text {max }}=1.33 \times 10^{-3} \mathrm{Cb} / \mathrm{m}^{2}=1.33 \times 10^{-7} \mathrm{Cb} / \mathrm{cm}^{2}$.
(5) (a) From electrostatics we know the potential energy of a neutral (i.e., equal + and - charge) dipole in an electric field is $U=-\mathbf{p} \cdot \mathbf{E}$ where \mathbf{p} is the dipole moment that, by convention, points between the - and + charges and has magnitude $\mathrm{q} \cdot \mathrm{d}$ where q is the dipole charge and d is the charge separation $=\mathrm{a} /(2)^{1 / 2}$ according to the Figure below. So for the E oriented as shown between the - and + charges, the potential energy of the four possible interstitial sites as enumerated is

$$
\mathrm{U}_{1}=-\mathbf{p}_{1} \cdot \mathbf{E}=\mathbf{0} \text { (since } \mathbf{p}_{1} \text { and } \mathbf{E} \text { are perpendicular); } \quad \mathrm{U}_{2}=-\mathbf{p}_{2} \cdot \mathbf{E}=-\mathrm{eaE} /(2)^{1 / 2}
$$

$\mathrm{U}_{3}=-\mathbf{p}_{3} \cdot \mathbf{E}=\mathrm{eaE} /(2)^{1 / 2} ; \quad \mathrm{U}_{4}=-\mathbf{p}_{4} \cdot \mathbf{E}=0$ (since \mathbf{p}_{4} and \mathbf{E} are perpendicular)
By assuming M-B Statistics, we can thus write probability of occupancy of the ith dipole
level $P_{i}=C e^{-U_{i} / k_{B} T}$ where $C=\left(\sum_{i=1}^{4} e^{-U_{1} / k_{B} T}\right)^{-1}$ is the normalization constant.
Exponential factors: Dipole (1): $e^{-U_{1} / k_{B} T}=e^{-0}=1 ;$ Dipole (2): $e^{-U_{2} / k_{B} T}=e^{\left(\frac{\operatorname{ea} E}{\sqrt{2}}\right) / k_{B} T}$

$$
\text { Dipole (3): } e^{-U_{2} / k_{B} T}=e^{-\left(\frac{\dot{e} E}{\sqrt{2}}\right) / k_{B} T} ; \quad \text { Dipole (4) : } e^{-U_{3} / k_{B} T}=e^{-0}=1
$$

$$
\mathrm{C}=\left\{2+\exp \left[\mathrm{eaE} /\left(2^{1 / 2} \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)\right]+\exp \left[-\mathrm{eaE} /\left(2^{1 / 2} \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)\right]\right\}^{-1}
$$

(b) Substitution of $\mathrm{a}=3 \times 10^{-10} \mathrm{~m}, \mathrm{E}=1 \times 10^{8} \mathrm{~V} / \mathrm{m}$, and $\mathrm{T}=300 \mathrm{~K}$ yields eaE/(2 $\left.{ }^{1 / 2} \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)=0.821$
so $\mathrm{C}=(2+2.27+0.44)^{-1}=0.2123$, and we get for the probabilities:
$\mathrm{P}_{1}=0.212 \quad \mathrm{P}_{2}=0.482 \quad \mathrm{P}_{3}=0.094 \quad \mathrm{P}_{4}=0.212$
$\left\{\right.$ Note: $\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\mathrm{P}_{4}=1.0$ as expected for any probability calculation $\}$

