ECE215A/Materials206A Winter 2008 Prof. Brown/ECE Dept/UCSB HW#1 Solutions

(1) Inspecting the Table 2.2 in Kittel, and other sources (see for example, http://www.physicsofmatter.com/Edition2/Download/Tables/pdf/Tab07.pdf):

(a) lowest compressibility,	(a) highest compressibility
diamond form of C, $\kappa = 2.26 \text{ x} 10^{-12} \text{ m}^2/\text{n}$;	Cs , $\kappa = -500 \text{ x} 10^{-12} \text{ m}^2/\text{n}$ (but barely a solid
	at 300 K, $T_{melt} = 301.6 \text{ K !}$
(b) lowest expansivity	(b) highest expansivity
W, $\alpha = 4.5 \text{ x} 10^{-6} \text{ K}^{-1}$;	Cd and Zn , $\alpha \approx 30 \text{ x} 10^{-6} \text{ K}^{-1}$
(from above Website, Table 7.7: α is linear expansivity; volume expansivity, $\beta = 3 \alpha$)	
(c) lowest thermal conductivity	(c) highest thermal conductivity
S, $K = 0.15 \text{ W/K-m}$;	diamond form of C, K=700-1700 W/K-m
(d) lowest electrical conductivity	(d) highest electrical conductivity
S, $\sigma = 5 \times 10^{-16} \text{ S/m}$	Ag, $\sigma = 6.2 \times 10^7 \text{ S/m}$

(2) The ideal gas and block of copper, each of volume $0.5 m^3$ @ 300K and 1 atm. Pressure is increased to 5 atm isothermally.

(a) Work done in each process is given by $-\int_{V_1}^{V_2} P dV$ where V_1 is the volume at P = 1 atm and

 V_2 is the volume at P = 5 atm. It is helpful to draw a P-V diagram as shown in the figure below. In general, P decreases with increasing V for a gas or solid, but it decreases much slower for a gas because it is so much more compressible. Therefore, the change in volume ΔV and work done is greater for the gas. Graphically, the work done is the area under the P-V curve, as shown below.

(b) • For the ideal gas, PV = nRT

 $n = \# mole, R = gas constant = (8.31 \times 10^3 J / mole - K)$

So,
$$V = \frac{nRT}{P}$$
 and $dV = \frac{-nRTdP}{P^2}$ and $-\int_{V_1}^{V_2} PdV = \int_{P_1}^{P_2} \frac{nRTPdP}{P^2} = nRT \ln P \begin{vmatrix} P_2 \\ P_1 \end{vmatrix} = nRT \ln \left(\frac{P_2}{P_1}\right)$

But all ideal gases have the same molal density, $v = 22.41 \text{ m}^3/kilomole$

So,
$$n = \frac{0.5 \ m^3}{22.41} = 0.0223 \ kmole \ and -\int PdV = (0.0223)(8.31 \times 10^3)(300)\ln(5/1) = 8.95 \times 10^4 J$$
.

• For copper, we know compressibility $\kappa = -\frac{1}{V} \frac{\partial V}{\partial P} = 0.7 \times 10^{-6} atm^{-1}$. As in most solids, we can assume this κ is constant over small pressure changes (we will see how small when we study elasticity theory). So we can integrate,

ECE215A/Materials206A Winter 2008 Prof. Brown/ECE Dept/UCSB

The P-V description for Problem 2

$$-\kappa dP = \frac{dV}{V} \text{ or } \ln \frac{V_2}{V_1} = -\kappa \left(P_2 - P_1\right) \text{ or } V_2 = V_1 \exp\left[-\kappa \left(P_2 - P_1\right)\right]$$

So,
$$\int_{V_1}^{V_2} -PdV = \int_{P_1}^{P_2} P\kappa V dP = \int_{P_1}^{P_2} P\kappa V_1 \exp\left[-\kappa \left(P - P_1\right)\right] dP$$

For $\kappa = 0.7 \times 10^{-6} / atm$, $P_1 = 1 Atm$, $P_2 = 5 atm$ the term $\exp\left[-\kappa(P-P_1)\right]$ varies slowly around unity, so that $\int_{P_1}^{P_2} P \kappa V_1 \exp\left[-\kappa(P-P_1)\right] dP \approx \int_{P_1}^{P_2} P \kappa V_1 dP = \kappa V_1 \frac{P^2}{2}$ = $(0.7 \times 10^{-6})(0.5 m^3)(\frac{1}{2})(5^2 - 1^2) = 4.2 \times 10^{-6} m^3 - Atm = 0.42 J$ (using 1 Atm $\approx 10^5$ N/m²)

(c) • volume change for ideal gas

$$\left|V_{2}-V_{1}\right| = nRT\left(\frac{1}{P_{1}} - \frac{1}{P_{2}}\right) = (0.0223)(8.31 \times 10^{3})(300)\left(1 - \frac{1}{5}\right)\left(\frac{Atm}{10^{5}N/m^{2}}\right) = 0.44 \ m^{3}$$

• volume change for copper $|V_2 - V_1| = V_1 - V_1 \exp\left[-K(P_2 - P_1)\right]$

$$K(P_2 - P_1) \langle \langle 1, \exp[-K(P_2 - P_1)] \approx 1 - K(P_2 - P_1) \text{ and} \\ |V_2 - V_1| \approx V_1 K(P_2 - P_1) = 0.5 (0.7 \times 10^{-6}) (5 - 1) = 1.4 \times 10^{-6} m^3$$

(3) (a) since the volume is fixed and the temperature is rising, we expect the pressure must rise. To calculate this, we take advantage of the fact that V is an exact differential in T and P. So $dV = \partial V/\partial T|_P dT + \partial V/\partial P|_T dP = 0$ because of constant volume constraint. So we get $dP = \frac{-\partial V/\partial T|_P}{\partial V/\partial P|_T} dT = (\beta/\kappa) dT$. And if β and κ are assumed constant with respect to

temperature (not a bad approximation, particularly over a 100 K excursion in temperature around 300 K), then by integration $\Delta P = (\beta/\kappa) \Delta T$. So for the copper, we get (in MKSA units) $\Delta P = (55 \times 10^{-6}/0.7 \times 10^{-11}) \times 100 = 7.9 \times 10^{8} \text{ N/m}^{2} \approx 7.9 \times 10^{3} \text{ Atm}$. For the Si we get $\Delta P = (8.4 \times 10^{-6}/1.0 \times 10^{11}) \times 100 = 8.4 \times 10^{7} \text{ N/m}^{2} \approx 840 \text{ Atm}$

ECE215A/Materials206A Winter 2008 Prof. Brown/ECE Dept/UCSB HW#1 Solutions

- (b) Because of the constant volume, no work is done and the change in energy of the cubes is all by heat, making the heat a total differential. This allows us to obtain the heat input by integrating the specific heat capacity C'_V or $\Delta Q = M C_V \Delta T$ where M is the mass of each cube. The densities of Cu and Si are (from Kittel's material Table 1.4) $8.93 \times 10^3 \text{ kg/m}^3$ and $2.33 \times 10^3 \text{ kg/m}^3$, respectively. So we find $\Delta Q = 346 \text{ J}$ for Cu and $\Delta Q = 163 \text{ J}$ for Si.
- (c) To keep the hydrostatic pressure constant with the rising temperature we consider the exact differential $dP = \partial P/\partial T|_V dT + \partial P/\partial V|_T dV = 0 = (\beta/\kappa) dT + (-1/\kappa)dV$, so that $\Delta V = \beta \Delta T = V_0 \beta \Delta T = 5.5*10^{-3} \text{ cm}^3$ for the Cu, and $8.4*10^{-4} \text{ cm}^3$ for the Si.
- (4) (a) From basic circuit theory and electrostatics, the electrical potential energy of a capacitor is $U_E = (1/2)CV^2$ where $C = \varepsilon_r \varepsilon_0 A/d$, A is the area of the plates and d is their separation. Also from electrostatics we know for parallel plates the internal electric field is E = V/d. So the potential energy can be restated as $U_E = (1/2)\varepsilon_r\varepsilon_0 A d E^2 = (1/2)\varepsilon_r\varepsilon_0 V E^2$, and the energy density is $U_E^2 = U_E/V = (1/2)\varepsilon_r\varepsilon_0 E^2$, which has a max value of $4.4 \times 10^4 \text{ J/m}^3 = 0.044 \text{ J/cm}^3$.
 - (b) In the notes we defined $(\chi_E)_{ij} = (\epsilon_0)^{-1} \partial \mathbf{P}_i / \partial \mathbf{E}_j$ which is generally a 2nd rank tensor. But we know that glass is an "LIH" (linear, isotropic, homogeneous) dielectric so this reduces to a scalar relationship, $P_E = \epsilon_0 \chi_E E$, where from electrostatics $\chi_E = \epsilon_r 1$. So for glass, we get (P_E)_{max} = ϵ_0 (4-1) $E_{max} = 1.33 \times 10^{-3} \text{ Cb/m}^2 = 1.33 \times 10^{-7} \text{ Cb/cm}^2$.
- (5) (a) From electrostatics we know the potential energy of a neutral (i.e., equal + and charge) dipole in an electric field is $U = -\mathbf{p} \cdot \mathbf{E}$ where \mathbf{p} is the dipole moment that, by convention, points between the and + charges and has magnitude q·d where q is the dipole charge and d is the charge separation = $a/(2)^{1/2}$ according to the Figure below. So for the E oriented as shown between the and + charges, the potential energy of the four possible interstitial sites as enumerated is

 $U_1 = -\mathbf{p}_1 \cdot \mathbf{E} = \mathbf{0}$ (since \mathbf{p}_1 and \mathbf{E} are perpendicular); $U_2 = -\mathbf{p}_2 \cdot \mathbf{E} = -eaE/(2)^{1/2}$ $U_3 = -\mathbf{p}_3 \cdot \mathbf{E} = eaE/(2)^{1/2}$; $U_4 = -\mathbf{p}_4 \cdot \mathbf{E} = 0$ (since \mathbf{p}_4 and \mathbf{E} are perpendicular) By assuming M-B Statistics, we can thus write probability of occupancy of the *ith* dipole

level
$$P_i = Ce^{-U_i/k_BT}$$
 where $C = \left(\sum_{i=1}^4 e^{-U_1/k_BT}\right)^{-1}$ is the normalization constant.

Exponential factors: Dipole (1): $e^{-U_1/k_BT} = e^{-0} = 1$; Dipole (2): $e^{-U_2/k_BT} = e^{\left(\frac{e\Delta E}{\sqrt{2}}\right)/k_BT}$ Dipole (3): $e^{-U_2/k_BT} = e^{-\left(\frac{e\Delta E}{\sqrt{2}}\right)/k_BT}$; Dipole (4): $e^{-U_3/k_BT} = e^{-0} = 1$ $C = \{2 + \exp[eaE/(2^{1/2}k_BT)] + \exp[-eaE/(2^{1/2}k_BT)]\}^{-1}$

(b) Substitution of a = $3x10^{-10}$ m, E = $1x10^8$ V/m, and T = 300 K yields eaE/ $(2^{1/2}k_BT) = 0.821$ so C = $(2 + 2.27 + 0.44)^{-1} = 0.2123$, and we get for the probabilities:

$$P_1 = 0.212$$
 $P_2 = 0.482$ $P_3 = 0.094$ $P_4 = 0.212$

{Note: $P_1 + P_2 + P_3 + P_4 = 1.0$ as expected for any probability calculation}